
MICE Users Guide

Thomas A� Montgomery� Jaeho Lee� David J� Musliner� Edmund H� Durfee
Daniel Damouth� Young�pa So� and the rest of the UM�DIAG

University of Michigan Distributed Intelligent Agents Group �UM�DIAG�
Arti�cial Intelligence Laboratory

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor� MI �	
��

January

�
���

Abstract

The Michigan Intelligent Coordination Experiment �MICE� testbed is a tool for experimenting
with coordination between intelligent systems under a variety of conditions� In this document� we
describe how to use the MICE system� We begin with a discussion of the design decisions that
determine what can and cannot be done in MICE� Then we present a procedure for running a MICE
experiment including the design of a simulation environment� the implementation of the intelligent
agents for the environment� and the execution of MICE� The user interface that helps gather
the results of experiments is described next� We conclude with examples from a predator�prey
implementation�

�This research was sponsored� in part� by the National Science Foundation under grant IRI�������	� by the
University of Michigan under a Rackham Faculty Research Grant� and by a Bell Northern Research Postgraduate
Award

�

Copyright ����� ���	
The Regents of the University of Michigan

Permission is granted to copy and redistribute this software so long as no fee is charged� and
so long as the copyright notice above� this grant of permission� and the disclaimer below appear in
all copies made�

This software is provided as is� without representation as to its
tness for any purpose� and
without warranty of any kind� either express or implied� including without limitation the implied
warranties of merchantability and
tness for a particular purpose� The Regents of the University of
Michigan shall not be liable for any damages� including special� indirect� incidental� or consequential
damages� with respect to any claim arising out of or in connection with the use of the software�
even if it has been or is hereafter advised of the possibility of such damages�

	

Contents

� Design Decisions �

� MICE and Agents �

� Building an Environment �

��� De
ning the Grid �
��	 De
ning Communication Channels �
��� De
ning Agents �
��
 De
ning Agent Interactions �	
��� An Example Agent Speci
cation ��

� Agent Implementation and Interface ��

�� Agent Invocation �

�	 Agent Commands to MICE �

�� Interface Functions to MICE ��

�
 Messages � 	�

�� Examples of Invocation Functions � 		

� MICE Execution ��

��� The Environment File � 	�
��	 Starting MICE � 	

��� MICE Activities � 	

��
 MICE Termination � 	

� User Interface ��

��� Graphics � 	�
��	 Saving and Restoring Runs � 	�
��� Statistical Measures � 	�
��
 Simulating Real�Time � 	�
��� Debugging � 	�

� Implementation Examples ��

��� Example Environment File � 	�
��	 Example Domain Predicates ��
��� Example Agent Implementation ��

�

� Design Decisions

The Michigan Intelligent Coordination Experiment �MICE� testbed simulates a two�dimensional
world in which intelligent agents can interact� MICE was designed to allow reproducibility in
experimentation and to be �exible and computationally e�cient� In addition� MICE has been
designed to be as easy to use as possible�

In developing MICE� we were primarily interested in building a testbed where we could simulate
agents that are acting concurrently� Of major importance was the ability to examine the individual
decisions that agents make and the context in which those decisions are made� Thus� rather than
implementing agent concurrency at the operating system level �and thus relinquishing control over
agent scheduling�� we designed MICE as a discrete event simulation� where events and actions in
the environment take some amount of simulated time and each agent has a simulated clock�

Because MICE is responsible for modeling the environment in which agents act� it must ensure
that the environment is legal �all environmental constraints are satis
ed� at each simulated time�
Whenever agents take actions that lead to an illegal situation �such as when 	 agents that cannot
share a location move into the same location�� MICE must resolve the situation using information
about the agents and user�supplied predicates� For example� if 	 agents that cannot share a location
attempt to move into the same location� a user�supplied predicate might cause MICE to resolve the
con�ict by returning them both to their previous locations� Assuming that the previous situation
was legal �and that the initial situation speci
ed by the user is always legal�� using a resolution
predicate that returns con�icting agents to their prior locations can always resolve a new situation
into a legal situation� in the worst case returning every agent to its previous state�

MICE not only represents time in discrete units� but in the current implementation it also
represents agent actions and environment locations and events as discrete entities� For example�
when an agent moves to its adjacent northerly location� it is in its original location at one discrete
time� and is in the adjacent location in the next discrete time� There is no concept of being
�partway� between discrete locations� Thus� in our design we had to decide how a movement
that takes more than one time unit should be simulated� When exactly does an agent make the
transition� To simplify resolution� our current implementation simulates these transitions by having
the agent move to the new location immediately� and then �resting� there for the remaining duration
of the move� This means that an agent that decides at time ti to move to an adjacent location will
arrive at that location at time ti � �� If the move requires n time units� it must remain in that
location until time ti � n� An upshot of this decision is that a slowly moving agent can �claim� a
location ahead of a quickly moving agent that decides to move into that location later� as shown
in Figure ���

In summary� our emphasis in developing the current version of MICE was to provide a plat�
form for simulating multi�agent environments where the simulations are reproducible� e�cient� and
where records of discrete agent actions and interactions can be saved for later inspection� MICE
accomplishes these goals through discrete event simulation� Because MICE also allows agents to
specify some amount of simulated time spent reasoning� MICE provides a platform for studying
issues in real�time decisionmaking� Real time constraints can be imposed by MICE using the
�real�time�knob� �see Section ��
�� or the agents can impose such constraints on themselves� For
example� the function that decides what an agent should do can record the times it begins and
ends computation� and then map the elapsed real�time spent into some number of simulated time
units �where di�erent ratios of real to simulated time will change the severity of how quickly agents
must reason�� Dynamic environments can also be simulated by implementing inanimate objects as

�On the other hand� simulating an agent to arrive at its new location at the last second would be similarly
problematic� It would �hold on
 to its old location well after we would have thought it would have left it

Slow agent
tDs tDs � � tNs

Fast agent

tDf tDf � �

tDx � x�s decision time tNx � x�s next decision time

A slowly moving agent decides at time tDs to move to some location
 It requires tNs � tDs time units
to complete the move� but is simulated to arrive one time unit after it makes the decision �tDs� ��
 It
then cannot move from there until tNs
 A quickly moving agent decides at tDf � which is after tDs� to
move to the same location
 It would arrive there one time unit later at tDf � �
 However� because the
slowly moving agent is already occupying that location� MICE resolves the situation by disallowing the
quickly moving agent�s move

Figure �� Timing of Actions of Di�ering Durations�

agents� For example� in a blocks world we can implement each block as an agent� and blocks might
act so that they sometimes move unexpectedly or slip from some robot�agent�s grasp�

� MICE and Agents

To use MICE properly� it is imperative that the user realize the clear delineation MICE makes
between what goes on outside an agent versus what goes on inside of it� As a simulator for multi�
agent worlds� MICE is only concerned with what goes on outside of an agent� MICE represents an
agent using the features described later in this manual� All of these features are concerned with
what actions the agents can take� how long they take� what happens when incompatible actions
are taken� how agents should look� etc� MICE does not represent� or even care about� what goes
on inside of an agent� in terms of what the agent knows� what it remembers of what it �and others�
have done before� how it uses sensory information� how it makes decisions� etc� In other words� the
reasoning that an agent does is cleanly separated from how an agent a�ects �and is a�ected by�
the simulated physical world�

Therefore� in implementing the decision making part of agents for MICE� the user will gen�
erally de
ne knowledge representations and functions that are separate from those of MICE� As
illustrated in the manual� and in example code supplied with MICE� what typically happens when
MICE invokes an agent �by calling a function speci
ed by the user which gets passed the agent
representation that MICE uses�� is that the invocation function retrieves the representation used
by the agent�s cognitive component�

One more word about agents and terminology in this manual� Agents are referred to in nu�
merous ways� As mentioned above� each agent has its own data structure that MICE uses when
manipulating the physical agent� Each agent also has its own unique name �generally supplied by
the user�� Finally� each agent has a type� which might be unique or might be shared with other
agents� By de
ning types �classes� of agents� we can specify interactions among agents more com�
pactly� In this manual� we attempt to make it clear what is expected when an �agent� is referred
to� manipulated� or passed as an argument�

�

� Building an Environment

Building an environment in the MICE system requires the speci
cation of the world itself �the
grid features and communication channels�� the characteristics of agents within the world� and the
interactions between agents� This information is speci
ed in an environment
le �Section �����

Grid Description	 The
rst step in building an environment is deciding on the features of the
world that the agents will occupy� This includes the size of the world �its dimensions� and the
features of locations within the world� For example� in simulating a
re
ghting scenario� it may be
decided to specify locations according to their content such as trees� water� and roads� In another
simulation� it may be decided that the content does not matter� but that elevation is relevant� In any
case� the important issue in deciding on grid features is not to try to mimic the real world exactly�
but rather to
nd the features of the real world that have an impact on the coordination issues
faced by the intelligent agents� Details on how to implement a grid are presented in Section ����

Communication Channels	 Communication between agents is often desired when experiment�
ing with coordination techniques� MICE provides communication facilities by allowing the user to
de
ne the di�erent communication media and their various characteristics� Agents communicate
with each other by issuing
SEND and
RECV commands� Communication in MICE is channel�
based� and the characteristics and participants of communication are de
ned as part of the channel�
Further details are in Section ��	�

Agent Types	 Next� the di�erent types of agents must be determined� This includes deciding on
a classi
cation of the agents and determining the characteristics shared and not shared by agents
of the same type� Such characteristics determine the abilities of the agent in the environment and
may relate back to the grid description �for example the speed of an agent may depend on the
terrain being covered��

Agents are de
ned through calls to create�agent which accepts a number of op�
tional keyword arguments� Those that are the most general and are used in almost
all applications include �NAME� �LOCATION� �ORIENTATION� �TYPE� �SENSORS� �MOVE�DATA�

�LINK�COST�ALIST� �UNLINK�COST�ALIST� and �DRAW�FUNCTION� Other agent character�
istics that are used in a large number of domains� though all of them might
not be used in any one application� include �BLOCKED�BY�TYPES� �DOMAIN�VARIABLES�
�AUTHORITY� �CREATE�P� �CREATE�FUNCTION� �REMOVE�P� �REMOVE�FUNCTION� �ACTIVATE�P�
�ACTIVATE�FUNCTION� �INACTIVATE�P� and �INACTIVATE�FUNCTION� Finally� �CAPTURE�TYPES

and �CAPTURED�BY�TYPES are domain speci
c characteristics that are included due to the sys�
tem�s early emphasis on predator�prey scenarios� Since the same results can be obtained using
the more general �DOMAIN�VARIABLES� these options may be removed in a future release� Further
details on the parameters to create�agent are presented in Sections ��� and ��
�

Agent Type Interactions	 In addition to the relationship between the agents and the envi�
ronment� the relationship between agent types must be speci
ed� This includes determining what
happens when two or more agents attempt to move to the same location� how the agents involved
are a�ected when they collide� how other spatial relationships a�ect agents or the environment�
how the presence of an agent might obstruct the scanning of another agent� and what types of
agents can capture what other types� Implementation details for agent interactions can be found
in Section ��
�

�

��� De�ning the Grid

The MICE world is a two�dimensional grid� and each location has a corresponding grid�element�
The size of the grid can be modi
ed as described in Section ���� Unless explicitly modi
ed� each
grid�element assumes that locations have no special features� The function get�grid�element

retrieves the grid�element for some speci
ed location� The
elds of a grid�element are settable and
selectable using the following accessor functions� grid�element�features� an association list of
user�de
ned features and their values� grid�element�agents� a list of the agents currently occu�
pying the location� and grid�element�draw�function� used by the graphics routines in deciding
how to represent the location graphically�

For example� the following code appears in the environment
le and modi
es the grid to rep�
resent a north�south wall in the middle of the grid� This wall blocks out predators� but prey can
move through it

�setf �grid�element�features �get�grid�element �make�location �x �� �y �� t��

�setf �grid�element�features �get�grid�element �make�location �x �� �y 	� t��

�setf �grid�element�features �get�grid�element �make�location �x �� �y ��� t��

�setf �grid�element�features �get�grid�element �make�location �x �� �y ��� t��

�setf �grid�element�features �get�grid�element �make�location �x �� �y �
� t��

�acons �BLOCKED�TYPES �list �PREDATOR� nil�������

��� De�ning Communication Channels

Communication channels are implemented by placing calls to create�channel in the environment

le� create�channel accepts the following keyword parameters to specify channel characteristics�

NAME channel�name
The channel�name is a unique identi
er for each channel that should be made up of a combination
of capital letters and numerals� It can be speci
ed as a string or a symbol� although MICE
converts it to a symbol for internal use� If no name is speci
ed� MICE creates a name of the form
C� integer ��

AGENTS agent�name�list
The agent�name�list is a list of agent names participating in the channel� Each name should be
for an agent that has already been created� Communication through the channel is possible only
among participating agents�

DELAY communication�delay
The communication�delay is a positive integer characterizing the communication time delay of the
channel� The default value is ��

CAPACITY communication�capacity
The communication�capacity is a positive integer representing the communication capacity of the
channel in terms of number of messages per unit time� nil represents in�nite capacity� The
default value is nil� If the agents using the channel together try to send more messages than
the communication capacity� only the highest priority messages are sent� The other messages are
handled according to the value of �FAILURE�MESSAGE�PRIORITY of the channel� the �STATUS of
failed messages are set to �OVER�CAPACITY�

�

RELIABILITY probability�of�successful�transmission
The probability�of�successful�transmission is a real value between � and �� Reliability of the
channel is summarized as the probability that a message is transmitted successfully over the
channel� The default value is �� The failed messages are handled according to the value of
�FAILURE�MESSAGE�PRIORITY of the channel� the �STATUS of the failed messages are set to
�FAILURE�

RANGE communication�region
The communication�region is a region created by the make�region function that includes mini�
mum and maximum x and y displacement from the agent�s current location� If the range is not
symmetric around the agent� then the �ORIENTATION�SENSITIVE�P slot should contain t� in which
case the range speci
ed is assumed to be for the agent when facing north� MICE will compute
the appropriate region for di�erent orientations of the agent� The default value of �RANGE is nil
specifying in�nite communication range� If the hearer is out of the communication range of the
speaker � transmission of the message fails with the message �STATUS set to �OUT�OF�RANGE�

OBSTRUCTED�BY obstruction�function
The obstruction�function is a function that takes a grid�element as an argument and returns a
number between � and � �indicating the width of the obstruction in the grid location�� or nil
if there is no obstruction in the location� If the communication between speaker and hearer is
obstructed� transmission of the message fails with the message �STATUS set to �OBSTRUCTED�

FAILURE�MESSAGE�PRIORITY priority�for�failed�messages
The priority�for�failed�messages is a priority value for the failed messages� Transmission of messages
fails because of limited capacity ��CAPACITY�� unreliability ��RELIABILITY�� limited communication
range ��RANGE�� and communication obstruction ��OBSTRUCTED�BY�� Since received messages are
ordered on the priority of the messages� setting the �FAILURE�MESSAGE�PRIORITY value high makes
the failed messages come
rst in the receive queue of the agent when the messages are sent back
to the speaker because of communication failure� If the value is negative� the failed messages are
dropped and are not sent back to the speaker �

TIME�TO�SEND time
The time is a positive integer value specifying the time required for an agent to
SEND a message
�place it� on the channel� The default value is ��

TIME�TO�RECEIVE time
The time is a positive integer value specifying the time required for an agent to
RECV a message
�take it o� the channel�� The default value is ��

A simple example of a channel is�

�create�channel �NAME �channel�	

�AGENTS ��PRED	 PRED
 PRED� PRED�

�DELAY 	

�CAPACITY nil

�RELIABILITY 	��

�RANGE NIL

�ORIENTATION�SENSITIVE�P �UNKNOWN

�OBSTRUCTED�BY nil

�

Here� a channel named �channel��� is established for communication between four agents named
PRED� through PRED
� Messages take one time unit to propagate to their destination� and the
channel has in
nite capacity and never loses messages� Its range is in
nite in all directions� so
orientation of the agent will not a�ect which agents can receive messages from it� Communication
cannot be obstructed�

��� De�ning Agents

Agents are implemented by placing calls to create�agent in the environment
le� Create�agent
accepts keyword parameters to specify agent characteristics� Most of the parameters are described
in this section� although some are deferred to Section ��
� Those parameters that should almost
always be speci
ed include�

NAME agent�name
The agent�name is a unique identi
er for each agent that should be made up of a combination of
capital letters and numerals� It can be speci
ed as a string or a symbol� although MICE converts it
to a symbol for internal use� If no name is speci
ed� MICE creates a name of the form A�integer��

LOCATION starting�location
The starting�location is a MICE�de
ned structure created with make�location that contains two
slots� �X�LOC and �Y�LOC� Starting locations can be randomly generated within a region of the
grid by using make�random�location�

ORIENTATION orientation
The orientation is a keyword that indicates the direction that the agent is facing ��NORTH� �SOUTH�
�EAST or �WEST�� If no orientation is speci
ed� then it is assumed that the agent is symmetrical
and all orientation�related predicates are ignored�

TYPE agent�type
The agent�type is a user de
ned keyword specifying the class of agents that this agent belongs to�

SENSORS sensor�list
The sensor�list is a list of sensors that are available to the agent� Sensors are created using
make�sensor�datawhich takes keyword arguments to specify their �RANGE� the amount of time con�
sumed in using them ��TIME�� whether they are �ORIENTATION�SENSITIVE�P� the type of informa�
tion that they pick up ��INTERESTING�P�� and information about objects that they cannot see past
��OBSTRUCTED�BY�� The �RANGE should be a region created by make�region that includes minimum
and maximum x and y displacements from the agent�s current location ��X�MIN� �Y�MIN� �X�MAX�
and �Y�MAX�� If the range is not symmetric around the agent� then the �ORIENTATION�SENSITIVE�P
slot should contain t� in which case the range speci
ed is assumed to be for the agent when facing
north� MICE will compute the appropriate region for di�erent orientations of the agent� The �TIME
is an expression that� when evaluated� should return an integer� The �INTERESTING�P slot con�
tains a function that takes a grid�element as an argument and returns either t or nil depending on
whether the sensor is allowed to detect the contents of that grid�element based on those contents�
The �OBSTRUCTED�BY
eld is a function that takes a grid�element as an argument and returns a
number between � and � �indicating the width of the obstruction in the grid location�� or nil if
there is no obstruction in the location� If �SENSORS is not speci
ed� then the agent is given a default

�

sensor which has a time cost of zero� is not obstructed� and has a range of �� to � in both the x
and y directions�

CHANNELS channel�list
The channel�list is a list of channels that are available to the agent� Channels are created using
create�channel which is explained in Section ��	�

MOVE�DATA move�data
The move�data is a structure created by make�move�data that indicates the amount of time it takes
to move in each direction ��NORTH� �SOUTH� �EAST� �WEST� or �FORWARD� �BACKWARD� �LEFT�

�RIGHT�� and the time it takes to �ROTATE�ONE�QUADRANT� The values should evaluate to either an
integer corresponding to the time needed� or nil if movement in that direction is forbidden� The
default for each is ��

LINK�COST�ALIST association�list
The association�list pairs agent types with a simulated time cost that the agent incurs when linking
with agents of that type� The simulated time cost is an expression that� when evaluated� returns
an integer� In future releases� this cost will be allowed to vary depending on the type of link being
formed�

UNLINK�COST�ALIST association�list
The association�list pairs agent types with a simulated time cost that the agent incurs when un�
linking from agents of that type� The simulated time cost is an expression that� when evaluated�
returns an integer� In future releases� this cost will be allowed to vary depending on the type of
link being removed�

DRAW�FUNCTION icon�function �KEY argument !
The icon�function is a function which draws the desired icon using device�independent graphics
calls de
ned in di�graphics�lisp� A set of common icons is available from icons�lisp� including�
rectangle�icon� circle�icon� triangle�icon� clock�icon� square�clock�icon� hero�icon� and
others� Most of these icon functions can take one or more keyword argument pairs to specify their
appearance� For example� most icons can be drawn as solid
gures instead of hollow by specifying
�FILLED t� The hour to display on the clock icons is speci
ed by �HOUR 	�	
� Some of the icons
also take a �LABEL �string� argument� which will display the label in the center of the icon�
Figure 	 shows how some of the available icons look� as used in the testicons�env
le�

When the icon function is actually called by MICE� its
rst argument is the grid location in
which it should draw the icon� If the icon is representing an agent� the agent structure is passed in
under the �AGENT keyword� so that the icon function can examine the state of the agent and alter
its graphical representation as necessary� For example� the hero�icon function draws the arm of
the Hero pointed towards the direction the Hero is headed� and changes the length of the arm if
the Hero is linked� See icons�lisp for clues on writing new icon functions� Users should feel free to
create new icons� they will not require any changes to MICE itself�

Other agent characteristics are important for a large number of domains� but may be left
unspeci
ed in some cases�

��

R4R1

smlt

triangle

smlc

circle

smlr

rect

MICE Time = 1

Figure 	� PostScript output of example icons found in testicons�env�

BLOCKED�BY�TYPES agent�type�list
�BLOCKED�BY�TYPES is a list of those agent types that this agent cannot share a location with� It
is used to trigger calls to the user�speci
ed collision function �see Section ��
��

AUTHORITY agent�authority
The agent�authority is an integer that represents the authority of an agent relative to the other
agents� If not speci
ed� an agent�s authority defaults to the integral portion of its name or to � if
its name does not contain numerals �for example� RED� would have a default authority of �� while
AGENTA would default to ���

DOMAIN�VARIABLES assoc�list
This
eld contains any domain�speci
c information desired in an association list� For example� an
implementation that requires the use of strength and size information for agents would
ll this slot
with something like� ���STRENGTH � �� ��SIZE � ����

Finally� there are some agent characteristics that are currently supported by MICE for historical
reasons� and are of particular use in simulating predator�prey environments�

CAPTURE�TYPES agent�type�list
A list of the agent types that this agent can help capture�

CAPTURED�BY�TYPES agent�type�list
A list of the agent types that can capture this agent�

��

��� De�ning Agent Interactions

Agents can interact in various ways� Sometimes� the actions of individual agents can lead to
combinations of actions that violate environmental constraints� When constraints are violated�
the situation must be resolved� for example� if two agents that cannot occupy the same location
simultaneously move to the same place� MICE must resolve the situation� At other times� the
agents can enter situations that trigger some response in the environment� For example� if we want
our simulation to remove agents once they are captured �surrounded by agents of another type��
we must supply MICE with predicates to test for relevant situations and functions that specify the
consequences of the situation� Information about agents� interactions are speci
ed in the following

elds of the agents� where each
eld contains some function or predicate chosen from the growing
library of domain�speci
c possibilities or created by the user�

COLLISION�FUNCTION function�de�nition�assoc�list
The function�de�nition�assoc�list pairs each agent type that the current agent might collide with�
with the function to resolve the collision� An agent�type speci
er �ALL indicates that the associated
function applies to all collisions� Each such function takes as arguments the structures of the 	
agents that have collided �either by moving to the same location or by switching locations which
implies that they must have passed through one another� and the time of the collision� Unless the
agents� �BLOCKED�BY�TYPES
elds name each other�s types� the agents cannot collide� If they do
block each other� then the default�collision�function will move them back to where they were at
the previous time� Essentially� they bounce o� one another to return to where they were� Another
option is to use the agents� �AUTHORITY
eld to decide which agent should be given preference� The
authority�collision�function gives the preferred agent its desired location� while the other agent
is returned to its previous location �unless it had not moved� in which case it is �pushed� in front
of the preferred agent�� Users are also free to de
ne their own collision functions�

Once any constraint violations have been resolved� MICE checks other environmental interactions
that might be precipitated in the new situation�

OVERLAP�PREDICATES function�de�nition�assoc�list
The function�de�nition�assoc�list pairs each agent type that the current agent might overlap �cur�
rently� share a location� with� with a function to apply in that instance� An agent�type speci
er
�ALL indicates that the associated function applies to all collisions� Each such function takes as
arguments the structures of the 	 agents that are overlapping and the time of the overlap� and
determines the side�e�ects of the overlap� For example� the sharing of a location between 	 agents
might cause the authority of one to rise and the other to fall �as if they were exchanging power
between them��

CREATE�P predicate
The predicate takes as arguments the agent structure and the simulated time� and returns non�nil if
the agent should create some agent�s�� causing the �CREATE�FUNCTION to be invoked� For example�
if an agent survives for a certain amount of time� it might generate a clone of itself as a form of
reproduction�

CREATE�FUNCTION function
The function takes as arguments the agent structure and the simulated time� The function should

�	

include one or more calls to create�agent� and should return a list of the results of those calls
�containing the names of the created agents��

REMOVE�P predicate
The predicate takes as arguments the agent structure and the simulated time� and returns non�nil
if the agent should remove some agent�s�� possibly including itself� When non�nil� it causes the
�REMOVE�FUNCTION to be invoked� For example� if an agent is surrounded by predators� it might
remove itself because it has been captured�

REMOVE�FUNCTION function
The function takes as arguments the agent structure and the simulated time� and returns either a
list of agent structures or a single agent structure of the agent�s� that should be removed from the
environment� For example� the mice�self function returns current agent�s data structure�

ACTIVATE�P predicate
The predicate takes as arguments the agent structure and the simulated time� and returns
non�nil if the agent�s status should be changed to �ACTIVATED� When non�nil� it causes the
�ACTIVATE�FUNCTION to be invoked� For example� if an agent has �rested� for a while� it might
re�activate itself�

ACTIVATE�FUNCTION function
The function takes as arguments the agent structure and the simulated time� It performs any
side�e�ects that are desired when an agent is being activated�

INACTIVATE�P predicate
The predicate takes as arguments the agent structure and the simulated time� and returns
non�nil if the agent�s status should be changed to �INACTIVATED� When non�nil� it causes the
�INACTIVATE�FUNCTION to be invoked� For example� if an agent has used up all of some regener�
able resource� it might become inactive until that resource is regenerated� Note that MICE does
not automatically restrict the actions of an inactivated agent� it is up to the user to decide what it
means for an agent to be inactive�

INACTIVATE�FUNCTION function
The function takes as arguments the agent structure and the simulated time� It performs any
side�e�ects that are desired when an agent is being inactivated�

��� An Example Agent Speci�cation

The speci
cation below� taken from an environment
le� creates an agent named PRED� that is
of type �PREDATOR� It can capture agents of type �PREY� and also is blocked by �cannot share a
location with� agents of type �PREY� If it and an agent that can block it attempt to move into or
through each other� their collision is resolved by a function �supplied with MICE� called authority�
collision�function that lets the agent with higher authority get its way� The authority of this agent
is speci
ed as ��� It is created at simulated time � at a randomly chosen location within the 	�
by 	� grid� It can communicate on either or both of channel�� and channel�	� and has a sensor
whose range extends �� units in each of the four directions� When MICE determines that this
agent should provide more commands� MICE calls the function named manager�contractor�agent �

��

When this agent is drawn on the screen� it is drawn like a circular clock face with a hand pointing
to one o�clock�

�create�agent �NAME �PRED	�

�TYPE �PREDATOR

�CAPTURED�BY�TYPES �

�CAPTURE�TYPES ���PREY

�BLOCKED�BY�TYPES �list �PREY

�COLLISION�FUNCTION

�acons �ALL ���authority�collision�function nil

�AUTHORITY 	�

�CREATION�TIME �

�LOCATION �make�random�location �X
� �Y
�

�CHANNELS ��channel�	 channel�

�SENSORS

�list �make�sensor�data

�RANGE �make�region �X�MIN �	� �Y�MIN �	�

�X�MAX 	� �Y�MAX 	�

�INVOCATION�FUNCTION �manager�contractor�agent

�DRAW�FUNCTION ��clock�icon �hour 	

� Agent Implementation and Interface

MICE has been designed to separate agent implementations from the simulation of the environment
in which agents live� Because of the desire to allow agents with very di�erent reasoning architectures
to reside in MICE �and with each other�� we have enforced a very clearly delineated interface
between agents and MICE�

��� Agent Invocation

As MICE simulates the concurrent activities of agents� it must interleave the activities of the
agents based on each agent�s simulated clock time �see Section ����� When an agent is cho�
sen for execution� MICE executes the agent by calling the agent�s �INVOCATION�FUNCTION� The
�INVOCATION�FUNCTION is speci
ed by the user when de
ning an agent as a parameter of the
create�agent function�

An agent�s invocation function takes as an argument the current agent�s data�structure� This
allows di�erent agents to use the same invocation function since the function receives information
about which agent is actually being executed� In future CLOS�based releases� this argument to
the invocation function will change to provide better information hiding� The invocation function
should return a list of commands to MICE indicating the decisions that the agent has made about
its actions at this simulated time�

��� Agent Commands to MICE

Currently� agents can issue commands to MICE that represent decisions that the agents have made
regarding motion� perception� interactions� and time� These commands can include requests to

MOVE to an adjacent location� to
ROTATE in order to change orientation� to
SCAN some
region� to
LINK to another agent� to
UNLINK from another agent� to take no action at the

�

current time �the
QUIESCENT command�� to take no action for a speci
ed length of time �the

NULL�ACTION command�� to spend a certain amount of time
REASONING� or to
STOP�

MICE allows two sources of simulated�time costs� One source is the cost associated with a
particular action� such as how long it takes to move� scan� or link� The information used to
compute these costs are speci
ed when an agent is implemented� The other source is the cost
associated with deciding on that action� In some simulations� this source is considered negligible�
and so these costs are always �� However� in other simulated environments� the time needed to
decide on an action adds to the overall time for taking the action� and might delay the initiation of
the action� MICE allows the latter type of time cost via the
REASONING command� whereby
an agent can specify that it has spent a certain amount of time reasoning� Alternatively� time spent
reasoning can be charged by MICE by using the �real�time�knob� described in Section ��
�

For example� let us say an agent spent 	 simulated time units deciding to move �NORTH� Its
invocation function would return 	 commands� one indicating
REASONING for 	 time units�
and then a second requesting a
MOVE �NORTH� These are bu�ered by MICE and executed at
the proper time� Of course� if the agent is behaving in a very dynamic environment� it might
want to double�check between the
REASONING and
MOVE commands to make sure that
the
MOVE is still valid� This capability must be supported by the agent itself� Once a sequence
of commands are sent to MICE� they are executed entirely before the agent�s invocation function
is once again called� However� the user can implement an agent such that it internally bu�ers a
sequence of commands �possibly with associated validity conditions� and issues these one at a time
to MICE� This way� the agent is given a chance to double�check the situation before issuing the
next command�

A command to MICE is essentially a request for some action to take place� These actions are
tentative because concurrent actions by several agents might con�ict� For example� two agents that
cannot share locations can issue commands that would result in their being in the same location�
In this case� the agents are tentatively moved and their simulated clocks updated� but MICE later
recognizes the constraint violation and resolves it in the user�speci
ed way �by default� it moves
them back to their original positions�� The time costs of the moves� however� are not undone� The
agents have wasted some amount of time by taking con�icting actions�

The commands to MICE and their related arguments are�

MOVE direction
The direction is currently one of �NORTH� �SOUTH� �EAST� �WEST� �FORWARD� �BACKWARD� �LEFT�
�RIGHT� or nil �stay in the same location�� This causes the agent to be tentatively moved to
the adjacent location in the direction indicated �in the case of �FORWARD� �BACKWARD� �LEFT� and
�RIGHT� the direction will depend on the agent�s current orientation�� The time costs of the move
are computed from the �MOVE�DATA information provided by the user when de
ning the agent�

ROTATE direction number�of�quadrants
The direction is generally one of �RIGHT or �LEFT� although the agent can request an absolute
direction ��NORTH� �SOUTH� �EAST� �WEST� which will cause the agent to turn to that direction
�arbitrarily to the left if it must turn all the way around�� The number�of�quadrants indicates how
far to turn �� quadrant equals �� degrees�� This causes the agent�s orientation to be tentatively
changed� The time costs of the rotation are computed from the �ROTATE�ONE�QUADRANT slot of the
agent�s �MOVE�DATA information provided by the user when de
ning the agent�

SCAN sensor

��

The sensor is a sensor data structure from the list of the agent�s sensors �see Section ���� or the
keyword �ALL� The time costs are computed from the sensor data structure� MICE simulates the
execution of the provided sensor by searching through the appropriate grid�elements and storing
the scanned information as a list of grid�descriptions� The agent can subsequently retrieve this
information using the function read�and�reset�scanned�data �Section
����

AFFECT location ���FEATURES nil ��DRAW�FUNCTION nil �
The location is either a location in the grid or a relative direction �see
MOVE�� If the keyword
�FEATURES is speci
ed� the features
eld of the grid element speci
ed by location will be changed
to the given argument� Likewise� if the keyword �DRAW�FUNCTION is speci
ed� the grid element�s
draw function will be changed to the given argument� This command takes no simulated time�

LINK linked�to�agent link�type
The linked�to�agent is the name of an agent to which the current agent is attempting to link�
The link�type is currently one of �FRONT� �LEFT� �RIGHT� �BACK� �SHARED�LOC� �NORTH� �SOUTH�
�EAST� �WEST� or �NEXT�TO� indicating the spatial relationship of the linked�to�agent relative to the
current agent at the next time unit� Links to front� back� left� and right are orientation dependent�
so turning will �swing� a linked agent around� �SHARED�LOC allows an agent to link to another that
should occupy the same location� Links to north� south� east� and west keep the linked agent in
that direction from the linking agent regardless of the linking agent�s orientation� �NEXT�TO allows
linking to an adjacent agent in any direction �north� south� east� west�� and from that point on
maintains the link in only that speci
c direction� The time costs of linking are computed from the
user�supplied information in the agent�s �LINK�COST�ALIST slot�

UNLINK linked�to�agent
The linked�to�agent is the name of an agent from which the current agent is attempting to un�
link� The time costs of unlinking are computed from the user�supplied information in the agent�s
�UNLINK�COST�ALIST slot�

REASONING time
The time is the simulated time spent reasoning�
REASONING only increments the agent�s
simulated time by the amount speci
ed� and has no other e�ects�

NULL�ACTION time
Increments the agent�s clock by the amount speci
ed by time� Has no other e�ects�

QUIESCENT

Same as
NULL�ACTION� except that the amount of idle time is exactly � time unit�

STOP

Permanently removes the agent from the set of simulated agents�

SEND channel�name type content ���PRIORITY priority ��HEARER agent�name �
The agent sends a message through the channel channel�name with the priority � The message is
of type with content � User can specify any type and content of the message as arguments to this
command� If the hearer is not speci
ed explicitly as a keyword argument� the default is for all
participants of the channel including the speaker to receive the message�

��

RECV channel�name ���COUNT number ��CLEAR t�or�nil �
The agent receives at most count messages from the channel�name� If the keyword argument clear
is set to t� the remaining messages of the channel are cleared after returning at most count messages
from the channel� If the number of messages to receive from the channel is greater than count �
messages are selected based on the priority of the message� The default count value is in
nity� The
agent can subsequently retrieve received messages using the function read�and�reset�received�

messages �Section
����

One limitation of the current MICE commands is that a diagonal movement is a combination
of discrete steps� leading to zig�zag movement� The distance an agent travels �and the time of its
trip� between two diagonal locations is simply the manhattan distance� As a result� a round about
route �n moves north then n moves east� takes as much time as moving �diagonally� between the
locations�

Because some simulations might require intelligent route planning where the costs of moving
diagonally should be less than the manhattan movement costs� we are adding that functionality�
Currently available �but not thoroughly tested� are the additional commands�

GOTO x y break�p
Plots a path from the agent�s current location to location x� y and saves the sequence of individ�
ual move commands� Computes the overall movement time as the smallest integer greater thanp
time�"x�� � time�"y��� It then allows moves in the sequence to go �faster�� It is recommended

that
GOTO only be used when the times for movements in all directions are greater than ��
otherwise
GOTO might cause instantaneous moves� MICE cannot guarantee correct application
of environmental constraints when moves are instantaneous� In addition� since MICE requires that
time costs be speci
ed as integers� greater resolution can be achieved by scaling up the time costs�
For example� consider moving to an adjacent diagonal location� If moves in the x and y directions
take � time unit� then the diagonal move time equals the manhattan distance because

p
	 is rounded

up to 	� However� if we scale all time units by a factor of �� �moves in the x and y directions take
�� time units�� then the diagonal move

p
	�� is rounded to ��� which is a savings compared to the

manhattan distance of 	��
The break�p argument is a predicate that is evaluated before each of the stored move commands�

If the evaluation returns non�nil� then the agent�s invocation function is called and the agent
has an opportunity to insert new commands ahead of the remaining move commands� This is
used� for example� to scan for obstructions that might have moved into view since the
GOTO
command was
rst issued� If the
GOTO command should be aborted� the agent should return
the
INTERRUPT command�

INTERRUPT

Whenever MICE encounters the
INTERRUPT command for an agent� it discards any pending
commands for the agent�

��� Interface Functions to MICE

Agents should generally interface to MICE via the commands speci
ed above� However� certain
MICE functions might allow more powerful �though potentially less structured� uses of MICE�
Other MICE functions might be useful utility functions for implementing agents� The functions
available in the MICE external interface �extint�lisp� are described below�

��

create�agent #REST keyword�arguments
Creates a new agent and incorporates it into the simulation� The keyword arguments correspond to
the
elds of an agent �Section ����� Speci
cally� the new agent structure is added to two lists that
MICE keeps� One list is called �agent�schedule�queue�� which is the list of agents that MICE
cycles through during the discrete event simulation� Only agents on that list can be invoked� The
second list is called �all�agents�� which holds structures for all agents created during a run of
MICE� The distinction is that an agent might be removed due to interactions within MICE �such
as a prey being captured and consumed by predators�� the removed agent would be deleted from
the �agent�schedule�queue�� However� to maintain history� and to allow runs to be saved and
restored� that agent will remain on the �all�agents� list�

create�channel �REST keyword�arguments
Creates a new communication channel and incorporates it into the simulation� The keyword
arguments are explained in �Section ��	�� The resulting structure gets added to the list
�mice�channels��

agent�structure agent�name
Returns the agent data�structure for the agent whose name matches the symbol agent�name�

read�and�reset�scan�data �KEY �reset�value nil� �agent �current�agent��
Returns the list of grid�descriptions generated by the last
SCAN command to MICE� Each
grid�description has information about its location �grid�description�coordinates�� the agents
at the location �grid�description�agents�� and the features of the corresponding grid�element
�grid�description�features�� read�and�reset�scan�data also sets the bu�er to reset�value af�
ter reading it� Note that using a di�erent reset value can distinguish between having scanned since
the last read�and�reset�scan�data but nothing was there �nil�� versus not having scanned since the
last read�and�reset�scan�data �reset�value�� In particular� in cases where the same agent is invoked
multiple times at the same discrete time �because� for example� scanning is simulated to take no
time�� such distinctions can be crucial to avoid in
nite loops�

read�and�reset�received�messages �KEY �reset�value �EMPTY� �agent �current�agent��
Returns the list of messages generated by the last
RECV command to MICE� Clears the bu�er and
resets the bu�er with the reset�value� If no messages are generated by the last
RECV command�
it returns nil� If the function is called subsequently at the same discrete time without another

RECV command� it returns current reset�value�

get�grid�element location �OPTIONAL �create nil� �KEY x y
Returns the grid�element for the speci
ed location �or for location �x�y� if provided�� If no grid�
element exists for the location and the optional create argument is non�nil� then a new grid�element
is created and returned�

nd�agent�location agent �OPTIONAL �time �current�time��
Returns the location of the agent at the given time� If the time is not supplied� returns the current
location of the agent�

��

nd�agent�orientation agent �OPTIONAL �time �current�time��
Returns the orientation of the agent at the given time� If the time is not supplied� returns the
current orientation of the agent�

nd�agent�status agent �OPTIONAL �time �current�time��
Returns the status of the agent at the given time� If the time is not supplied� returns the current
status of the agent�

nd�agent�linkages agent �OPTIONAL �time �current�time��
Currently returns t if the agent is linked to at least one other agent at the given time �or at the
current time if the time argument is not speci
ed��

nd�agent�other agent �OPTIONAL �time �current�time��
Sometimes� the user wants to have recorded� for each simulated time� something else about each
agent� To do this�
the user should set the variable �other�state�history�information�function� to a function
that returns whatever state information the user wants recorded for the agent at each simulated
time� Then the function
nd�agent�other can be used to retrieve this information�
nd�agent�
other currently returns t if the agent is linked to at least one other agent at the given time �or at
the current time if the time argument is not speci
ed��

move�agent agent�structure direction
Moves the agent in the desired direction� Returns the simulated time costs for that movement�

compute�new�location old�location direction
Given an old�location and a direction� generates a new location data�structure for the location
adjacent to the old�location in the speci
ed direction�

legal�location�p location �KEY �agent nil�
Checks to see whether the location is within the grid boundary� If the agent parameter is speci
ed
�an agent data�structure�� it also checks to see if the agent is allowed in the location� based on the
features of that location� by calling agent�allowed�in�location�p�

agent�allowed�in�location�p location agent
Checks to see if the agent �given as an agent data�structure� is allowed in the location� based on
the features of the location�

legal�region�p region �KEY �agent nil� x�min x�max y�min y�max
Checks to see whether the region is within the grid boundary� Returns the allowable portion of
the region� or nil if the entire region falls outside of the grid boundary� If the agent parameter is
speci
ed �an agent data�structure�� it also checks to see if the agent is allowed in every location
within the region� based on the features of the locations� by calling agent�allowed�in�region�p

with the allowable portion of the region�

agent�allowed�in�region�p region agent �KEY x�min x�max y�min y�max
Checks to see if the agent �given as an agent data�structure� is allowed in every location within
the region �based on the features of the locations��

��

location�in�region�p location region
Checks to see if the location is in the region�

regions�overlap�p region	 region

Checks to see if any locations are common to region� and region	�

nd�movement�time agent direction
Determines the time costs for the agent �given as an agent data�structure� to move in the given
direction�

rotate agent direction number�of�quadrants
Changes the orientation of the agent by rotating it the given number of times in the direction
provided� Returns the time costs for the rotation �the number of quadrants times the agent�s
rotate cost�quadrant��

null�action agent time
Increments the agent�s clock by the provided amount of time�

scan�mice�region scan�regions sensor�location �KEY �interesting�p ��live�agent�at�location�p�
obstructed�by x�min y�min x�max y�max
Scan�regions is a list of regions to be investigated� sensor�location is the current location of the
sensor performing the scanning �used to determine which parts of the region are obstructed��
interesting�p is a predicate used to test the features of a location to decide whether the location is
of interest� obstructed�by is an optional predicate used to test the features of a location to decide
whether the sensor can penetrate through the location� and x�min
 y�min
 x�max
 and y�max
provide an alternative means for specifying the region for inspection� This function returns a list
of grid�descriptions within the speci
ed region that meet the interesting�p criteria and which are
not obstructed by other objects in the region�

live�agent�at�location�p grid�element
Checks the grid�element given �corresponding to a particular location� and returns non�nil if any
agents in that location currently have a status of �ACTIVE�

scan�for�agent�grid�descriptions agent
Given an agent doing the scanning� checks its list of sensors and its current location and calls scan�
mice�region with that information �all other arguments to scan�mice�region receive their default
values��

get�visible�grids x�sensor y�sensor x�min x�max y�min y�max interesting�p obstructed�by
Returns grid�descriptions for all interesting locations within the region de
ned by �x�min x�max
y�min y�max� that are visible from the sensor location �x�sensor y�sensor�� �This function currently
contains a constant for the diameter of the obstructions� This constant will become a speci�able
parameter in future releases of MICE��

	�

link linker linkee link�type
Creates a link between the linker and the linkee �where linkee can be a single agent or a list of
agents�� The link�type speci
es the position of the linkee relative to the linker�s orientation� It is
assumed that� once linked� the linker has authority over the linkee� such that if the linker changes
its orientation� the linkee is moved correspondingly�

unlink linker linkee
Removes all links between the linker and the linkee �where linkee can be a single agent or a list of
agents��

send�message agent channel�name type content �KEY �priority �� �hearer �ALL�
The agent sends a message through the channel channel�name with the priority � The message
is of type with content � User can specify any type and content of the message as arguments of
this function� If the hearer �an agent name� is not speci
ed explicitly as a keyword argument� all
participants of the channel including the speaker will receive messages�

recv�messages agent channel�name �KEY �count most�positive��xnum� �clear nil�
The agent receives at most count messages from the channel�name� If the keyword argument clear
is set to t� the remaining messages of the channel are cleared after returning at most count messages
from the channel� If the number of messages to receive from the channel is greater than count �
messages are selected based on the priority of the message� The default count value is in
nity�

select�messages messages �KEY �type �ALL� �status �SUCCESS�
select�messages is an auxiliary function for convenient handling of received messages� Since
the recv�messages function just returns a list of messages� the user may want to select only
part of the messages of type and status � type is the user speci
ed value as an argument of the
send�message function and the status is set by MICE during transmission� The possible values
for status are �OVER�CAPACITY� �OUT�OF�RANGE� �OBSTRUCTED� �FAILURE and �SUCCESS� The
status of �OVER�CAPACITY� �OUT�OF�RANGE� �OBSTRUCTED and �FAILURE represent the reasons for
the transmission failure� Especially� �FAILURE messages occur when the reliability value of the
channel is less than ���� The messages successfully delivered over the channel have �SUCCESS

status� select�messages returns two values using multiple values � The
rst value is the list of
selected messages and the second value is the list of remaining messages after selection�

��� Messages

When an agent issues a
SEND command� MICE makes a message and transmits it over the
channel� Thus� the read�and�reset�received�messages function following the
RECV command
returns a list of messages of the structure MICE makes� The slots of the structure can be accessed
using message� pre
x to the slot name� The available slots are speaker
 hearer
 type
 content

priority
 channel�name
 time�created � and status � The speaker and hearer are the names of the
sender and receiver respectively� The type
 content
 priority and channel�name are those that are
speci
ed as parameters of the
SEND command� The time�created slot indicates the simulated
time when the message is created� The status is the status of message delivery� A message that
is successfully delivered will have �SUCCESS as its status � and returned messages will have one of
�OVER�CAPACITY� �OUT�OF�RANGE� �OBSTRUCTED� �FAILURE as a status �see Section ��	��

	�

��� Examples of Invocation Functions

Example �	 Following is an example of invocation function by which the agent sends and receives
a message to other agents and then moves randomly�

�defun communication�agent �agent

�let ��messages �read�and�reset�received�messages �RESET�VALUE �EMPTY

�cond ��eq �EMPTY messages

����RECV channel�	

�t

�� print received messages

�mapcar ���lambda �message

�format t ���Time �a� �a ��� �a� content �a� status �a�

�current�time�

�message�hearer message

�message�speaker message

�message�content message

�message�status message

messages

�� Send a message containing the sender�s name and current�time�

����SEND channel�	 test ��list �agent�name agent
 �current�time�

��MOVE ��nth �random �
 ���NORTH �SOUTH �EAST �WEST

Example �	 Following is an example of invocation function by which the agent interleaves scan�
ning and moving� In moving� it randomly chooses among directions that are not blocked�

�defun wandering�agent �agent

�let ��scan�data �read�and�reset�scanned�data

�if scan�data

�let� ��agent�blockers �agent�blocked�by�types agent

�agent�location �agent�location agent

�loc�x �location�x agent�location

�loc�y �location�y agent�location

�valid�directions�and�locations

�list �list �EAST �make�location �X �	� loc�x
 �Y loc�y

�list �WEST �make�location �X �	� loc�x
 �Y loc�y

�list �NORTH �make�location �X loc�x �Y �	� loc�y

�list �SOUTH �make�location �X loc�x �Y �	� loc�y

�dolist �grid�desc scan�data

�let ��valid�dir�and�loc

�some

���lambda �valid�one

�when �equalp �second valid�one

�grid�description�coordinates grid�desc

valid�one

valid�directions�and�locations

		

�when �and valid�dir�and�loc

�some

���lambda �near�agent

�member �agent�type near�agent
 agent�blockers

�grid�description�agents grid�desc

�setf valid�directions�and�locations

�delete valid�dir�and�loc

valid�directions�and�locations

�TEST �equalp

����MOVE ��first �nth �random �list�length

valid�directions�and�locations

valid�directions�and�locations

����SCAN �ALL

� MICE Execution

Having decided on a simulated environment for the agents and having implemented the agents�
decisionmaking procedures� we can continue on to run MICE�

��� The Environment File

The information about the grid and the speci
c agents in an environment are stored in a
le called
an environment �le� This
le has the following parts �see Section � for a more complete example��

Simulation Data

A global variable called �simulation�data� points to a structure that contains information about
the simulated world� In particular� it has a
eld called overall�region that speci
es the region
encompassed by the grid� By default� the grid has locations from � to 	� �inclusive� in the x and
y dimensions� To modify the grid to a �� by �� size� the environment
le would have an entry�

�setf �simulation�data�overall�region �simulation�data�

�make�region �X�MIN � �Y�MIN � �X�MAX 	� �Y�MAX 	�

Grid Features

Next� any features of the grid �other than agents� are de
ned� For example� if we wanted to put a
feature at location ������� that would prevent agents of type �PREY from occupying that location�
we could add a feature to the grid�element at that location that associates the key �BLOCKED�TYPES

with the agent type �PREY�

�setf �grid�element�features

�get�grid�element �make�location �X 	� �Y 	�
 t

�acons �BLOCKED�TYPES �list �PREY
 nil

Agents

Finally� we would instruct MICE to make the agents to populate the environment� For example�
we might make an agent named sitting�duck of type �PREY� who begins in location ������ takes 	
time units to move in any direction� is captured by �PREDATOR agents� is graphically depicted as a

lled square� and has an invocation�function called prey�invocation�function�

	�

�create�agent �NAME �SITTING�DUCK

�TYPE �PREY

�LOCATION �make�location �X � �Y �

�BLOCKED�BY�TYPES �list �PREDATOR �PREY

�MOVE�DATA �make�move�data �NORTH
 �SOUTH
 �EAST
 �WEST

�CAPTURED�BY�TYPES �list �PREDATOR

�DRAW�FUNCTION ��square�icon �FILLED t

�INVOCATION�FUNCTION ��prey�invocation�function

��� Starting MICE

Once an environment
le has been prepared� MICE can be invoked with the mice function�

mice environment��le �KEY �time�limit
���
Initiates a MICE run� Reads in the speci
ed environment��le� and then simulates the actions of the
agents� The time�limit keyword argument indicates the maximum simulated time that is allowed�

��� MICE Activities

At any given time� MICE invokes the agent with the least advanced simulated clock� If there
is a tie� it will by default give preference to the agent with the lowest authority� The pred�
icate used to sort agents for execution is user�modi
able� and is bound to the global variable
�sort�agent�predicate��

After it executes an agent� MICE checks to see what simulated time the agent with the least�
advanced clock is at� and if this is greater than it was before the agent executed �MICE maintains
a �global� clock to store this value�� then MICE must resolve any con�icting actions that might
have occurred between the previous value of the global clock and the current global clock time� It
steps through the intervening times� and for each time�

�� It checks any actions initiated by the agents at that time and the resulting state of the agents
as a consequence of those actions�

	� It resolves any con�icts between the actions �see Section ��
��

�� It checks the resolved situation against the set of possible agent interactions� For example�
it checks the predicates for removing agents� such as when a �PREY agent is surrounded by
�PREDATOR agents�

� It takes any actions triggered by the situation�

�� If any actions were taken in step
� it goes back to step �� Otherwise� it is done�

��� MICE Termination

The criteria for termination are user�speci
ed� Sometimes we want MICE to stop when no agent
has moved for some
xed amount of time� Other times we want MICE to stop when no goals are
left to achieve �such as when all of the �PREDATOR agents have captured all of the �PREY agents��
Currently� the user de
nes a predicate called mice�continue�p that speci
es the conditions under
which MICE should continue the simulation� By default� the function continues until either the
time�limit has been reached or until no agent has moved�

	

�������������� TIME � ��������������

� � R H H R � � �

� � J J J J � � �

	 � � � � � � � �

R r R C c C T t T

r s r c s c t s t

� R C R T C R C �

Figure �� Text output of example icons found in testicons�env�

� User Interface

��� Graphics

The graphical icons which MICE uses to represent agents and grid features are drawn using a
set of device�independent graphics calls� which then are translated into the appropriate device�
dependent calls based on the �graphics mode�� We have written the device�dependent routines
for X�windows� the Macintosh� and the TI Explorers� We also have a set of Postscript routines
that can produce accurate Postscript depictions of MICE simulation grids� so that printing MICE
grids or including grid images in LaTEX documents is simple �as seen in Figure 	 on Page ���� The
di�set�graphics�mode function sets the graphics mode to one of the following symbols� �X� �TI�
�MAC� �PS�

The default width of the graphics display is held in the global variable �display�width�� The
size of the display window can be changed by setting this variable �in approximate inches� before
running MICE� The Macintosh version of MICE allows resizing of the window during execution by
dragging the corner of the display window�

If no graphics display is available� a simple textual representation of the MICE grid can be
obtained by setting �graphics�� to nil� MICE will then print to the screen a matrix with dots ��s�
in empty grid locations and single characters in
lled locations� The single character will be the

rst character of a �LABEL that is speci
ed in the draw�function call� or a character representing the
icon function �e�g�� �R� for a rectangle�icon�� Figure � shows the same simulation grid as Figure 	�
in the textual representation�

If you wish to turn o� all forms of the MICE grid display� for example while running multiple
simulations �more quickly� in the background� set �display�� to nil�

To save the PostScript code for a single grid image� use�

save�grid�ps �key �time �current�time�� ��le ��time��lps���
This creates a postscript
le that can be printed directly� or included into a LaTEX document using
the ps
g macros�

��� Saving and Restoring Runs

Experimental runs can be saved to a
le and later restored and redisplayed� MICE o�ers two options
for saving� restoring and redisplaying runs� one option saves the device independent graphics calls
needed to reproduce the graphical description of a simulation run� the other saves MICE data
structures including the entire state history for each agent�

	�

save�mice�graphics �le
This function saves the device independent graphics calls needed to reproduce the graphical de�
piction of a MICE simulation run� Note that even if the graphic display is disabled by setting
�display�� to nil� the graphics calls are still recorded so that� when running multiple simulations
in the background� you can have a program detect interesting results and save the simulation for
later examination� However� if you set �graphics�� to nil� the device�independent graphics calls
are never made� and thus cannot be saved with this option�

save�mice�history �le
This function saves the MICE data structures into �le including the de
nition of each agent� the
features of the grid� and the history of commands executed� locations occupied� links created� and
so on�

restore�mice�graphics �le
This function loads the device independent graphics calls contained in �le so that they can be
redisplayed by calling redisplay�graphics�

restore�mice�history �le
This function loads the data structures contained in �le so that they can either be inspected or
redisplayed by calling redisplay�history�

redisplay�graphics �key �start �� end �sleep�time �� �breaks nil�
This function redisplays a MICE simulation run using the set of device independent graphics
routines that were either just executed or just restored� The display will begin at the speci
ed
�START time and end at the speci
ed �END time �or at the end of the simulation run�� If the
simulation is being redisplayed too quickly� use �SLEEP�TIME to set the number of seconds to pause
between each time step� Use �BREAKS to specify a list of times at which the redisplay should pause�
waiting for a keystroke to continue�

redisplay�history �key �start �� end �sleep�time �� �breaks nil�
This function redisplays a MICE simulation run using the MICE data structures from the run just
executed or just restored� The parameters are identical to those of redisplay�graphics above�

��� Statistical Measures

Currently� MICE can optionally maintain a small number of statistics� corresponding to the number
of moves that agents attempt and the number of these that are successful �do not lead to con�ict��
More types of measuring will be added in future releases�

��� Simulating Real	Time

MICE has a variable called �real�time�knob� that can be used as a simple mechanism for reward�
ing �penalizing� agents for making decisions quickly �slowly�� By default� the �real�time�knob�

is nil� which disables it� If it is non�nil� it should contain a number� This number is used by MICE
to map actual runtime into simulated time units�

Speci
cally� MICE records the time �using get�internal�real�time� when the invocation�function
for an agent is called and when it returns� and computes the total elapsed time for invocation in
seconds� This value is multiplied by the value of �real�time�knob�� and the result is rounded

	�

to an integer value� MICE then inserts� onto the front of the list of commands returned by the
invocation function� a
REASONING command for the integer value computed� So� for example�
if an agent spends ��
 seconds generating commands for MICE� and �real�time�knob� is set to
���� then the commands the agent has generated are postponed by � simulated time units�

��� Debugging

MICE has a few variables that can be used to help in debugging� These include�

�verbose�� If non�nil� MICE sends to text output an indication of what command each agent is
sending to MICE�

�debug�� If non�nil� MICE announces each invocation of an agent�

�collision�verbose� If non�nil� MICE informs the user when two agents have collided�

�link�verbose� If non�nil� MICE informs the user when a linking activity has been attempted�

� Implementation Examples

In the following subsections� we illustrate through very simple examples how the MICE environ�
ment� domain predicates� and agents can be de
ned� Users are referred to additional examples
accompanying the MICE system�

	�

�� Example Environment File

This
le gives an example of a simple environment where four predators attempt to capture one
prey agent� To make matters more interesting� there is a wall running north�south in the middle
of the grid that blocks predators but does not block prey�

��

��

���������������

��������������� SIMPLE PREDATOR�PREY ENVIRONMENT

���������������

��

��

� First� modify the grid to represent a north�south wall in the middle of

� the grid
 This wall blocks out predators� but prey can move through it

�setf �grid�element�features �get�grid�element �make�location �x �� �y �� t��

�setf �grid�element�features �get�grid�element �make�location �x �� �y 	� t��

�setf �grid�element�features �get�grid�element �make�location �x �� �y ��� t��

�setf �grid�element�features �get�grid�element �make�location �x �� �y ��� t��

�setf �grid�element�features �get�grid�element �make�location �x �� �y �
� t��

�acons �BLOCKED�TYPES �list �PREDATOR� nil�������

� Also� set the draw�function for these grid locations to be square icons

�setf �grid�element�draw�function �get�grid�element

�make�location �x �� �y �� t��

�setf �grid�element�draw�function �get�grid�element

�make�location �x �� �y 	� t��

�setf �grid�element�draw�function �get�grid�element

�make�location �x �� �y ��� t��

�setf �grid�element�draw�function �get�grid�element

�make�location �x �� �y ��� t��

�setf �grid�element�draw�function �get�grid�element

�make�location �x �� �y �
� t��

��square�icon�������

� Next� create a communication channel

�create�channel �NAME �channel��

�AGENTS ��PRED� PRED
 PRED� PRED��

�DELAY �

�CAPACITY nil

�RELIABILITY �
�

�RANGE NIL

�ORIENTATION�SENSITIVE�P �UNKNOWN

�OBSTRUCTED�BY nil�

� Now� create a prey agent
 This agent begins in the center of the

� environment
 It can be captured by predators and cannot capture

� anything
 It�s REMOVE�P predicate indicates that it should be removed

� from the environment when it is captured� and its REMOVE�FUNCTION

� simply returns its own name as the agent to remove
 Its DRAW�FUNCTION

	�

� gives it a square clock�face representation with the label �P�

� It is blocked by �cannot share a location with or pass through� other

� prey and predator agents� it requires
 simulated time units to move in

� any direction� and it has limited sensors that only sense locations at

� most
 away from the agent in all directions �i
e
 it senses the � by �

� region around and including its location�

�create�agent �NAME �PREY�

�TYPE �PREY

�LOCATION �make�location �X �� �Y ���

�CAPTURED�BY�TYPES ���PREDATOR�

�CAPTURE�TYPES ���

�REMOVE�P �captured�agent�p

�REMOVE�FUNCTION �mice�self

�COLLISION�FUNCTION �collision�function

�DRAW�FUNCTION ��rectangle�icon �label �P��

�BLOCKED�BY�TYPES �list �PREDATOR �PREY�

�MOVE�DATA �make�move�data �NORTH
 �SOUTH
 �EAST
 �WEST
�

�INVOCATION�FUNCTION ��prey�invocation�function

�SENSORS

�list �make�sensor�data

�RANGE �make�region �X�MIN �
 �Y�MIN �

�X�MAX
 �Y�MAX
����

� Finally� create four predator agents
 Each agent begins at a different

� corner of the environment
 Each can capture prey and cannot be captured

� Each has a DRAW�FUNCTION that represents predator i as a round clock�face

� with a hand pointing to time i
 Each is blocked by �cannot share a location

� with or pass through� prey and other predator agents
 Each requires �

� simulated time unit to move in any direction� and has sensors that sense

� locations at most �� away from the agent in all directions

�create�agent �NAME �PREDATOR�

�TYPE �PREDATOR

�LOCATION �make�location �X � �Y ��

�CAPTURED�BY�TYPES ���

�CAPTURE�TYPES ���PREY�

�COLLISION�FUNCTION �collision�function

�DRAW�FUNCTION ��clock�icon �hour ��

�BLOCKED�BY�TYPES �list �PREDATOR �PREY�

�MOVE�DATA �make�move�data �NORTH � �SOUTH � �EAST � �WEST ��

�INVOCATION�FUNCTION ��predator�invocation�function

�CHANNELS ��channel���

�SENSORS

�list �make�sensor�data

�RANGE �make�region �X�MIN ��� �Y�MIN ���

�X�MAX �� �Y�MAX ������

�create�agent �NAME �PREDATOR

�TYPE �PREDATOR

�LOCATION �make�location �X
� �Y ��

�CAPTURED�BY�TYPES ���

�CAPTURE�TYPES ���PREY�

�COLLISION�FUNCTION �collision�function

	�

�DRAW�FUNCTION ��clock�icon �hour
�

�BLOCKED�BY�TYPES �list �PREDATOR �PREY�

�MOVE�DATA �make�move�data �NORTH � �SOUTH � �EAST � �WEST ��

�INVOCATION�FUNCTION ��predator�invocation�function

�CHANNELS ��channel���

�SENSORS

�list �make�sensor�data

�RANGE �make�region �X�MIN ��� �Y�MIN ���

�X�MAX �� �Y�MAX ������

�create�agent �NAME �PREDATOR�

�TYPE �PREDATOR

�LOCATION �make�location �X � �Y
��

�CAPTURED�BY�TYPES ���

�CAPTURE�TYPES ���PREY�

�COLLISION�FUNCTION �collision�function

�DRAW�FUNCTION ��clock�icon �hour ��

�BLOCKED�BY�TYPES �list �PREDATOR �PREY�

�MOVE�DATA �make�move�data �NORTH � �SOUTH � �EAST � �WEST ��

�INVOCATION�FUNCTION ��predator�invocation�function

�CHANNELS ��channel���

�SENSORS

�list �make�sensor�data

�RANGE �make�region �X�MIN ��� �Y�MIN ���

�X�MAX �� �Y�MAX ������

�create�agent �NAME �PREDATOR�

�TYPE �PREDATOR

�LOCATION �make�location �X
� �Y
��

�CAPTURED�BY�TYPES ���

�CAPTURE�TYPES ���PREY�

�COLLISION�FUNCTION �collision�function

�DRAW�FUNCTION ��clock�icon �hour ��

�BLOCKED�BY�TYPES �list �PREDATOR �PREY�

�MOVE�DATA �make�move�data �NORTH � �SOUTH � �EAST � �WEST ��

�INVOCATION�FUNCTION ��predator�invocation�function

�CHANNELS ��channel���

�SENSORS

�list �make�sensor�data

�RANGE �make�region �X�MIN ��� �Y�MIN ���

�X�MAX �� �Y�MAX ������

��� End of Environment File

��

�� Example Domain Predicates

Below are some predicates used in the simple predator�prey environment described in the environ�
ment
le�

��� ��

�

� Returns non�nil if the agent is surrounded by agents by which this agent

� can be captured
 Agent is an agent data�structure� time is the agent�s

� current time
 �agent�schedule�queue� is the list of currently active

� agents maintained by MICE

�defun captured�agent�p �agent time�

�let ��surrounding�agents

�find�neighboring�agents agent �agent�schedule�queue� time���

�and ��� �length surrounding�agents� ��

�every

���lambda �direction�

�let ��new�location

�compute�new�location �agent�location agent� direction���

�some ���lambda �a�

�and �equalp �agent�location a� new�location�

�member �agent�type a�

�agent�captured�by�types agent����

surrounding�agents���

���NORTH �SOUTH �EAST �WEST�����

��� ��

�

� Returns a list of all of the agents in the others argument that are in

� locations adjacent to the given agent at the specified time

�defun find�neighboring�agents �agent others time�

�cond ��null others� nil�

��� �� �abs �� �location�x �find�agent�location agent time��

�location�x �find�agent�location �first others� time����

�abs �� �location�y �find�agent�location agent time��

�location�y �find�agent�location �first others� time�����

��

�cons �first others� �find�neighboring�agents agent �rest others� time���

�t �find�neighboring�agents agent �rest others� time����

��� ��

�

� Moves agents that have collided and block each other back to their

� previous locations

�defun collision�function �agent� agent
 time�

�COLLISION�FUNCTION agent� agent
 time

Assumes that agent� and agent
 have passed through each other or are

attempting to occupy the same location
 If the agents block each other�

��

moves them back to where they were at previous time� otherwise leaves them

alone
�

�when �or �member �agent�type agent�� �agent�blocked�by�types agent
��

�member �agent�type agent
� �agent�blocked�by�types agent����

� find which of the agents moved to cause the problem �possibly both�

�let ��conflict�agents

�mapcan ���lambda �agent�

�when �not �equalp �find�agent�location agent time�

�find�agent�location agent

��� time����

�list agent������

� move each of the agents to where it was at the previous time

�move�agents�to�location�at�given�time conflict�agents ��� time��

t���

�	

�� Example Agent Implementation

An agent�s �INVOCATION�FUNCTION can be any lisp�callable function� For AI research� the function
should employ AI techniques to make appropriate decisions� Because such functionality can be very
complex� we instead here present a function that simply queries the user for some action� and then
passes the command back to MICE in the proper format� More complex examples are bundled
with the code� including a complete example of a predator�prey scenario in which the predators
negotiate using the Contract�Net protocol�

��

�

� Human�agent is an invocation�function that simply queries the user for some

� action and returns the appropriate command in the proper format for MICE

�defun human�agent �agent�

�format t ���Select command for agent �a��� �agent�name agent��

�format t �Move� Link� Unlink� Scan� Reason� sTop� Direction or Quiescent ��

�let ��response �char�upcase �read�char����

�cond

��eql response ��M�

�format t ���Select direction to move �N� S� E� W�
 ��

�setf response �char�upcase �read�char���

�format t ��a��� response�

�cond ��eql response ��N�

����MOVE �NORTH���

��eql response ��S�

����MOVE �SOUTH���

��eql response ��E�

����MOVE �EAST���

��eql response ��W�

����MOVE �WEST���

�t ����MOVE nil�����

��eql response ��L�

�format t

���Select link type� Front� Left� Right� Back� Next�to or Shared�loc
 ��

�let� ��response �char�upcase �read�char���

�link�type �case response

���F �FRONT�

���L �LEFT�

���R �RIGHT�

���B �BACK�

���N �NEXT�TO�

���S �SHARED�LOC�

�otherwise �cerror �Default to �NEXT�TO
�

�Illegal link type selected
��

�NEXT�TO����

�format t ���Enter agent to create �a link with
 � link�type�

�setf response �string�upcase �read�line���

����LINK ��intern response� �link�type����

��eql response ��U�

�format t ���Enter agent to unlink from
 ��

��

�setf response �read�line��

����UNLINK ��intern �string�upcase response�����

��eql response ��S�

�format t ���Enter time spent scanning
 ��

�setf response �read�line��

����SCAN ��string�to�int response����

��eql response ��R�

�format t ���Enter time spent reasoning
 ��

�setf response �read�line��

����REASONING ��string�to�int response����

��eql response ��T�

�format t ���Agent terminating
����

�STOP�

��eql response ��Q�

�format t ���Agent quiescent
����

�QUIESCENT�

��eql response ��D�

�format t ���Enter direction of rotation
 �Right� Left� ��

�let ��direction �if �eql �char�upcase �read�char�� ��L� �LEFT �RIGHT���

�format t ���Enter number of quadrants to rotate �a
 � direction�

����ROTATE �direction ��� �read�char� �int�char ���������

�t �format t ���Illegal selection
��������

�

