MICE Users Guide

Thomas A. Montgomery, Jaeho Lee, David J. Musliner, Edmund H. Durfee
Daniel Damouth, Young-pa So, and the rest of the UM-DIAG
University of Michigan Distributed Intelligent Agents Group (UM-DIAG)
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109

January 31, 1992

Abstract
The Michigan Intelligent Coordination Experiment (MICE) testbed is a tool for experimenting
with coordination between intelligent systems under a variety of conditions. In this document, we
describe how to use the MICE system. We begin with a discussion of the design decisions that
determine what can and cannot be done in MICE. Then we present a procedure for running a MICE
experiment including the design of a simulation environment, the implementation of the intelligent
agents for the environment, and the execution of MICE. The user interface that helps gather

the results of experiments is described next. We conclude with examples from a predator/prey
implementation.

°This research was sponsored, in part, by the National Science Foundation under grant IRI-9010645, by the

University of Michigan under a Rackham Faculty Research Grant, and by a Bell Northern Research Postgraduate
Award.

Copyright 1991, 1992
The Regents of the University of Michigan

Permission is granted to copy and redistribute this software so long as no fee is charged, and
so long as the copyright notice above, this grant of permission, and the disclaimer below appear in
all copies made.

This software is provided as is, without representation as to its fitness for any purpose, and
without warranty of any kind, either express or implied, including without limitation the implied
warranties of merchantability and fitness for a particular purpose. The Regents of the University of
Michigan shall not be liable for any damages, including special, indirect, incidental, or consequential
damages, with respect to any claim arising out of or in connection with the use of the software,
even if it has been or is hereafter advised of the possibility of such damages.

Contents
1 Design Decisions
2 MICE and Agents

3 Building an Environment

3.1 Defining the Grid
3.2 Defining Communication Channels
3.3 Defining Agents
3.4 Defining Agent Interactions L o
3.5 An Example Agent Specification Lo oo Lo
4 Agent Implementation and Interface
4.1 Agent Invocation e e
4.2 Agent Commands to MICE L
4.3 Interface Functions to MICE 0 o o o
44 MeSSAZES . v vt i e e e e e e e e e e e e e e e e e e e
4.5 FExamples of Invocation Functions o000 oo

5 MICE Execution

5.1 The Environment File e
5.2 Starting MICE o e
5.3 MICE Activities e e e e e e
5.4 MICE Termination e e e e e e

6 User Interface

6.1 Graphics oL
6.2 Saving and Restoring Runs oo L
6.3 Statistical Measures oL e
6.4 Simulating Real-Time
6.5 Debugging L e e
7 Implementation Examples
7.1 Example Environment File 0 oo o o
7.2 Example Domain Predicates oL o o
7.3 Example Agent Implementation oo oo

14
14
14
17
21
22

23
23
24
24
24

25
25
25
26
26
27

1 Design Decisions

The Michigan Intelligent Coordination Experiment (MICE) testbed simulates a two-dimensional
world in which intelligent agents can interact. MICE was designed to allow reproducibility in
experimentation and to be flexible and computationally efficient. In addition, MICE has been
designed to be as easy to use as possible.

In developing MICE, we were primarily interested in building a testbed where we could simulate
agents that are acting concurrently. Of major importance was the ability to examine the individual
decisions that agents make and the context in which those decisions are made. Thus, rather than
implementing agent concurrency at the operating system level (and thus relinquishing control over
agent scheduling), we designed MICE as a discrete event simulation, where events and actions in
the environment take some amount of simulated time and each agent has a simulated clock.

Because MICE is responsible for modeling the environment in which agents act, it must ensure
that the environment is legal (all environmental constraints are satisfied) at each simulated time.
Whenever agents take actions that lead to an illegal situation (such as when 2 agents that cannot
share a location move into the same location), MICE must resolve the situation using information
about the agents and user-supplied predicates. For example, if 2 agents that cannot share a location
attempt to move into the same location, a user-supplied predicate might cause MICE to resolve the
conflict by returning them both to their previous locations. Assuming that the previous situation
was legal (and that the initial situation specified by the user is always legal), using a resolution
predicate that returns conflicting agents to their prior locations can always resolve a new situation
into a legal situation, in the worst case returning every agent to its previous state.

MICE not only represents time in discrete units, but in the current implementation it also
represents agent actions and environment locations and events as discrete entities. For example,
when an agent moves to its adjacent northerly location, it is in its original location at one discrete
time, and is in the adjacent location in the next discrete time. There is no concept of being
“partway” between discrete locations. Thus, in our design we had to decide how a movement
that takes more than one time unit should be simulated: When exactly does an agent make the
transition? To simplify resolution, our current implementation simulates these transitions by having
the agent move to the new location immediately, and then “resting” there for the remaining duration
of the move. This means that an agent that decides at time ¢; to move to an adjacent location will
arrive at that location at time ¢; + 1. If the move requires n time units, it must remain in that
location until time ¢; + n. An upshot of this decision is that a slowly moving agent can “claim” a
location ahead of a quickly moving agent that decides to move into that location later, as shown
in Figure 1.

In summary, our emphasis in developing the current version of MICE was to provide a plat-
form for simulating multi-agent environments where the simulations are reproducible, efficient, and
where records of discrete agent actions and interactions can be saved for later inspection. MICE
accomplishes these goals through discrete event simulation. Because MICE also allows agents to
specify some amount of simulated time spent reasoning, MICE provides a platform for studying
issues in real-time decisionmaking. Real time constraints can be imposed by MICE using the
real-time-knob (see Section 6.4), or the agents can impose such constraints on themselves. For
example, the function that decides what an agent should do can record the times it begins and
ends computation, and then map the elapsed real-time spent into some number of simulated time
units (where different ratios of real to simulated time will change the severity of how quickly agents
must reason). Dynamic environments can also be simulated by implementing inanimate objects as

'On the other hand, simulating an agent to arrive at its new location at the last second would be similarly
problematic: It would “hold on” to its old location well after we would have thought it would have left it.

I ' I Slow agent

|
tDs tps + 1 tns

— Fast agent
tpy ipy+1
tps = ’s decision time tnz = 2’s next decision time

A slowly moving agent decides at time tp. to move to some location. It requires ¢ty — tp. time units
to complete the move, but is simulated to arrive one time unit after it makes the decision (tpS + 1). It
then cannot move from there until ¢y.. A quickly moving agent decides at tps, which is after ¢p., to
move to the same location. It would arrive there one time unit later at ¢tpy + 1. However, because the
slowly moving agent is already occupying that location, MICE resolves the situation by disallowing the
quickly moving agent’s move.

Figure 1: Timing of Actions of Differing Durations.

agents. For example, in a blocks world we can implement each block as an agent, and blocks might
act so that they sometimes move unexpectedly or slip from some robot-agent’s grasp.

2 MICE and Agents

To use MICE properly, it is imperative that the user realize the clear delineation MICE makes
between what goes on outside an agent versus what goes on inside of it. As a simulator for multi-
agent worlds, MICE is only concerned with what goes on outside of an agent. MICE represents an
agent using the features described later in this manual. All of these features are concerned with
what actions the agents can take, how long they take, what happens when incompatible actions
are taken, how agents should look, etc. MICE does not represent, or even care about, what goes
on inside of an agent, in terms of what the agent knows, what it remembers of what it (and others)
have done before, how it uses sensory information, how it makes decisions, etc. In other words, the
reasoning that an agent does is cleanly separated from how an agent affects (and is affected by)
the simulated physical world.

Therefore, in implementing the decision making part of agents for MICE, the user will gen-
erally define knowledge representations and functions that are separate from those of MICE. As
illustrated in the manual, and in example code supplied with MICE, what typically happens when
MICE invokes an agent (by calling a function specified by the user which gets passed the agent
representation that MICE uses), is that the invocation function retrieves the representation used
by the agent’s cognitive component.

One more word about agents and terminology in this manual. Agents are referred to in nu-
merous ways. As mentioned above, each agent has its own data structure that MICE uses when
manipulating the physical agent. Each agent also has its own unique name (generally supplied by
the user). Finally, each agent has a type, which might be unique or might be shared with other
agents. By defining types (classes) of agents, we can specify interactions among agents more com-
pactly. In this manual, we attempt to make it clear what is expected when an “agent” is referred
to, manipulated, or passed as an argument.

3 Building an Environment

Building an environment in the MICE system requires the specification of the world itself (the
grid features and communication channels), the characteristics of agents within the world, and the
interactions between agents. This information is specified in an environment file (Section 5.1).

Grid Description. The first step in building an environment is deciding on the features of the
world that the agents will occupy. This includes the size of the world (its dimensions) and the
features of locations within the world. For example, in simulating a fire fighting scenario, it may be
decided to specify locations according to their content such as trees, water, and roads. In another
simulation, it may be decided that the content does not matter, but that elevation is relevant. In any
case, the important issue in deciding on grid features is not to try to mimic the real world exactly,
but rather to find the features of the real world that have an impact on the coordination issues
faced by the intelligent agents. Details on how to implement a grid are presented in Section 3.1.

Communication Channels. Communication between agents is often desired when experiment-
ing with coordination techniques. MICE provides communication facilities by allowing the user to
define the different communication media and their various characteristics. Agents communicate
with each other by issuing :SEND and :RECV commands. Communication in MICE is channel-
based, and the characteristics and participants of communication are defined as part of the channel.
Further details are in Section 3.2.

Agent Types. Next, the different types of agents must be determined. This includes deciding on
a classification of the agents and determining the characteristics shared and not shared by agents
of the same type. Such characteristics determine the abilities of the agent in the environment and
may relate back to the grid description (for example the speed of an agent may depend on the
terrain being covered).

Agents are defined through calls to create-agent which accepts a number of op-
tional keyword arguments. Those that are the most general and are used in almost
all applications include :NAME, :LOCATION, :ORIENTATION, :TYPE, :SENSORS, :MOVE-DATA,
:LINK-COST-ALIST, :UNLINK-COST-ALIST, and :DRAW-FUNCTION. Other agent character-
istics that are wused in a large number of domains, though all of them might
not be used in any one application, include :BLOCKED-BY-TYPES, :DOMAIN-VARIABLES,
:AUTHORITY, :CREATE-P, :CREATE-FUNCTION, :REMOVE-P, :REMOVE-FUNCTION, :ACTIVATE-P,
:ACTIVATE-FUNCTION, :INACTIVATE-P, and :INACTIVATE-FUNCTION. Finally, :CAPTURE-TYPES
and :CAPTURED-BY-TYPES are domain specific characteristics that are included due to the sys-
tem’s early emphasis on predator-prey scenarios. Since the same results can be obtained using
the more general :DOMAIN-VARIABLES, these options may be removed in a future release. Further
details on the parameters to create-agent are presented in Sections 3.3 and 3.4.

Agent Type Interactions. In addition to the relationship between the agents and the envi-
ronment, the relationship between agent types must be specified. This includes determining what
happens when two or more agents attempt to move to the same location, how the agents involved
are affected when they collide, how other spatial relationships affect agents or the environment,
how the presence of an agent might obstruct the scanning of another agent, and what types of
agents can capture what other types. Implementation details for agent interactions can be found
in Section 3.4.

3.1 Defining the Grid

The MICE world is a two-dimensional grid, and each location has a corresponding grid-element.
The size of the grid can be modified as described in Section 5.1. Unless explicitly modified, each
grid-element assumes that locations have no special features. The function get-grid-element
retrieves the grid-element for some specified location. The fields of a grid-element are settable and
selectable using the following accessor functions: grid-element$features, an association list of
user-defined features and their values; grid-element$agents, a list of the agents currently occu-
pying the location; and grid-element$draw-function, used by the graphics routines in deciding
how to represent the location graphically.

For example, the following code appears in the environment file and modifies the grid to rep-
resent a north-south wall in the middle of the grid. This wall blocks out predators, but prey can
move through it

(setf (grid-element$features (get-grid-element (make-location :x 10 :y 8) t))
(setf (grid-element$features (get-grid-element (make-location :x 10 :y 9) t))
(setf (grid-element$features (get-grid-element (make-location :x 10 :y 10) t))
(setf (grid-element$features (get-grid-element (make-location :x 10 :y 11) t))
(setf (grid-element$features (get-grid-element (make-location :x 10 :y 12) t))
(acons :BLOCKED-TYPES (list :PREDATOR) nil)))))))

3.2 Defining Communication Channels

Communication channels are implemented by placing calls to create-channel in the environment
file. create-channel accepts the following keyword parameters to specify channel characteristics.

:NAME channel-name

The channel-name is a unique identifier for each channel that should be made up of a combination
of capital letters and numerals. It can be specified as a string or a symbol, although MICE
converts it to a symbol for internal use. If no name is specified, MICE creates a name of the form
C< integer >.

:AGENTS agent-name-list

The agent-name-list is a list of agent names participating in the channel. Each name should be
for an agent that has already been created. Communication through the channel is possible only
among participating agents.

:DELAY communication-delay
The communication-delay is a positive integer characterizing the communication time delay of the
channel. The default value is 1.

:CAPACITY communication-capacity

The communication-capacity is a positive integer representing the communication capacity of the
channel in terms of number of messages per unit time. nil represents infinite capacity. The
default value is nil. If the agents using the channel together try to send more messages than
the communication capacity, only the highest priority messages are sent. The other messages are
handled according to the value of :FAILURE-MESSAGE-PRIORITY of the channel; the :STATUS of
failed messages are set to :0VER-CAPACITY.

:RELIABILITY probability-of-successful-transmission

The probability-of-successful-transmission is a real value between 0 and 1. Reliability of the
channel is summarized as the probability that a message is transmitted successfully over the
channel. The default value is 1. The failed messages are handled according to the value of
:FATLURE-MESSAGE-PRIORITY of the channel; the :STATUS of the failed messages are set to
:FATLURE.

:RANGE communication-region

The communication-region is a region created by the make-region function that includes mini-
mum and maximum z and y displacement from the agent’s current location. If the range is not
symmetric around the agent, then the :ORIENTATION-SENSITIVE-P slot should contain t, in which
case the range specified is assumed to be for the agent when facing north. MICE will compute
the appropriate region for different orientations of the agent. The default value of :RANGE is nil
specifying infinite communication range. If the hearer is out of the communication range of the
speaker, transmission of the message fails with the message :STATUS set to :0UT-0F-RANGE.

:OBSTRUCTED-BY obstruction-function

The obstruction-function is a function that takes a grid-element as an argument and returns a
number between 0 and 1 (indicating the width of the obstruction in the grid location), or nil
if there is no obstruction in the location. If the communication between speaker and hearer is
obstructed, transmission of the message fails with the message :STATUS set to :0BSTRUCTED.

:FAILURE-MESSAGE-PRIORITY priority-for-failed-messages

The priority-for-failed-messages is a priority value for the failed messages. Transmission of messages
fails because of limited capacity (:CAPACITY), unreliability (:RELIABILITY),limited communication
range (:RANGE), and communication obstruction (:0BSTRUCTED-BY). Since received messages are
ordered on the priority of the messages, setting the :FAILURE-MESSAGE-PRIORITY value high makes
the failed messages come first in the receive queue of the agent when the messages are sent back
to the speaker because of communication failure. If the value is negative, the failed messages are
dropped and are not sent back to the speaker.

:TIME-TO-SEND time
The time is a positive integer value specifying the time required for an agent to :SEND a message
(place it) on the channel. The default value is 0.

:TIME-TO-RECEIVE time
The time is a positive integer value specifying the time required for an agent to :RECV a message
(take it off the channel). The default value is 0.

A simple example of a channel is:

(create-channel :NAME ’channel-1
:AGENTS ’ (PRED1 PRED2 PRED3 PRED4)
:DELAY 1
:CAPACITY nil
:RELIABILITY 1.0
:RANGE NIL
:ORIENTATION-SENSITIVE-P :UNKNOWN
:0BSTRUCTED-BY nil)

Here, a channel named ‘channel-1’ is established for communication between four agents named
PRED1 through PRED4. Messages take one time unit to propagate to their destination, and the
channel has infinite capacity and never loses messages. Its range is infinite in all directions, so
orientation of the agent will not affect which agents can receive messages from it. Communication
cannot be obstructed.

3.3 Defining Agents

Agents are implemented by placing calls to create-agent in the environment file. Create-agent
accepts keyword parameters to specify agent characteristics. Most of the parameters are described
in this section, although some are deferred to Section 3.4. Those parameters that should almost
always be specified include:

:NAME agent-name

The agent-name is a unique identifier for each agent that should be made up of a combination of
capital letters and numerals. It can be specified as a string or a symbol, although MICE converts it
to a symbol for internal use. If no name is specified, MICE creates a name of the form A<integer>.

:LOCATION starting-location

The starting-location is a MICE-defined structure created with make-location that contains two
slots: :X-LOC and :Y-LOC. Starting locations can be randomly generated within a region of the
grid by using make-random-location.

:ORIENTATION orientation

The orientation is a keyword that indicates the direction that the agent is facing (:NORTH, :SOUTH,
:EAST or :WEST). If no orientation is specified, then it is assumed that the agent is symmetrical
and all orientation-related predicates are ignored.

TYPE agent-type
The agent-type is a user defined keyword specifying the class of agents that this agent belongs to.

:SENSORS sensor-list

The sensor-list is a list of sensors that are available to the agent. Sensors are created using
make-sensor-data which takes keyword arguments to specify their :RANGE, the amount of time con-
sumed in using them (:TIME), whether they are :ORIENTATION-SENSITIVE-P, the type of informa-
tion that they pick up (:INTERESTING-P), and information about objects that they cannot see past
(:OBSTRUCTED-BY). The :RANGE should be a region created by make-region that includes minimum
and maximum x and y displacements from the agent’s current location (:X-MIN, :Y-MIN, :X-MAX,
and :Y-MAX). If the range is not symmetric around the agent, then the : ORIENTATION-SENSITIVE-P
slot should contain t, in which case the range specified is assumed to be for the agent when facing
north. MICE will compute the appropriate region for different orientations of the agent. The : TIME
is an expression that, when evaluated, should return an integer. The :INTERESTING-P slot con-
tains a function that takes a grid-element as an argument and returns either t or nil depending on
whether the sensor is allowed to detect the contents of that grid-element based on those contents.
The :0BSTRUCTED-BY field is a function that takes a grid-element as an argument and returns a
number between 0 and 1 (indicating the width of the obstruction in the grid location), or nil if
there is no obstruction in the location. If : SENSORS is not specified, then the agent is given a default

sensor which has a time cost of zero, is not obstructed, and has a range of -5 to 5 in both the x
and y directions.

:CHANNELS channel-list
The channel-list is a list of channels that are available to the agent. Channels are created using
create-channel which is explained in Section 3.2.

:MOVE-DATA move-data

The move-data is a structure created by make-move-data that indicates the amount of time it takes
to move in each direction (:NORTH, :SO0UTH, :EAST, :WEST, or :FORWARD, :BACKWARD, :LEFT,
:RIGHT), and the time it takes to :ROTATE-ONE-QUADRANT. The values should evaluate to either an
integer corresponding to the time needed, or nil if movement in that direction is forbidden. The
default for each is 1.

:LINK-COST-ALIST association-list

The association-list pairs agent types with a simulated time cost that the agent incurs when linking
with agents of that type. The simulated time cost is an expression that, when evaluated, returns
an integer. In future releases, this cost will be allowed to vary depending on the type of link being
formed.

:UNLINK-COST-ALIST association-list

The association-list pairs agent types with a simulated time cost that the agent incurs when un-
linking from agents of that type. The simulated time cost is an expression that, when evaluated,
returns an integer. In future releases, this cost will be allowed to vary depending on the type of
link being removed.

:DRAW-FUNCTION icon-function [KEY argument]*

The icon-function is a function which draws the desired icon using device-independent graphics
calls defined in di-graphics.isp. A set of common icons is available from icons.lisp, including:
rectangle-icon, circle-icon, triangle-icon, clock-icon, square-clock-icon, hero-icon, and
others. Most of these icon functions can take one or more keyword argument pairs to specify their
appearance. For example, most icons can be drawn as solid figures instead of hollow by specifying
:FILLED t. The hour to display on the clock icons is specified by :HOUR 1-12. Some of the icons
also take a :LABEL "string" argument, which will display the label in the center of the icon.
Figure 2 shows how some of the available icons look, as used in the testicons.env file.

When the icon function is actually called by MICE, its first argument is the grid location in
which it should draw the icon. If the icon is representing an agent, the agent structure is passed in
under the :AGENT keyword, so that the icon function can examine the state of the agent and alter
its graphical representation as necessary. For example, the hero-icon function draws the arm of
the Hero pointed towards the direction the Hero is headed, and changes the length of the arm if
the Hero is linked. See icons.lisp for clues on writing new icon functions. Users should feel free to
create new icons: they will not require any changes to MICE itself.

Other agent characteristics are important for a large number of domains, but may be left
unspecified in some cases:

10

Ol 0 R

<EWe N

~—

BO«0® /A L A
O

EIYADE®)

MICE Time=1

sml

-

Figure 2: PostScript output of example icons found in testicons.env.

:BLOCKED-BY-TYPES agent-type-list
:BLOCKED-BY-TYPES is a list of those agent types that this agent cannot share a location with. It
is used to trigger calls to the user-specified collision function (see Section 3.4).

:AUTHORITY agent-authority

The agent-authority is an integer that represents the authority of an agent relative to the other
agents. If not specified, an agent’s authority defaults to the integral portion of its name or to 1 if
its name does not contain numerals (for example, RED5 would have a default authority of 5, while

AGENTA would default to 1).

:DOMAIN-VARIABLES assoc-list

This field contains any domain-specific information desired in an association list. For example, an
implementation that requires the use of strength and size information for agents would fill this slot
with something like: ((:STRENGTH . 5) (:SIZE . 5)).

Finally, there are some agent characteristics that are currently supported by MICE for historical
reasons, and are of particular use in simulating predator/prey environments.

:CAPTURE-TYPES agent-type-list
A list of the agent types that this agent can help capture.

:CAPTURED-BY-TYPES agent-type-list
A list of the agent types that can capture this agent.

11

3.4 Defining Agent Interactions

Agents can interact in various ways. Sometimes, the actions of individual agents can lead to
combinations of actions that violate environmental constraints. When constraints are violated,
the situation must be resolved; for example, if two agents that cannot occupy the same location
simultaneously move to the same place, MICE must resolve the situation. At other times, the
agents can enter situations that trigger some response in the environment. For example, if we want
our simulation to remove agents once they are captured (surrounded by agents of another type),
we must supply MICE with predicates to test for relevant situations and functions that specify the
consequences of the situation. Information about agents’ interactions are specified in the following
fields of the agents, where each field contains some function or predicate chosen from the growing
library of domain-specific possibilities or created by the user.

:COLLISION-FUNCTION function-definition-assoc-list

The function-definition-assoc-list pairs each agent type that the current agent might collide with,
with the function to resolve the collision. An agent-type specifier :ALL indicates that the associated
function applies to all collisions. Fach such function takes as arguments the structures of the 2
agents that have collided (either by moving to the same location or by switching locations which
implies that they must have passed through one another) and the time of the collision. Unless the
agents’ :BLOCKED-BY-TYPES fields name each other’s types, the agents cannot collide. If they do
block each other, then the default-collision-function will move them back to where they were at
the previous time. Essentially, they bounce off one another to return to where they were. Another
option is to use the agents’ : AUTHORITY field to decide which agent should be given preference. The
authority-collision-function gives the preferred agent its desired location, while the other agent
is returned to its previous location (unless it had not moved, in which case it is “pushed” in front
of the preferred agent). Users are also free to define their own collision functions.

Once any constraint violations have been resolved, MICE checks other environmental interactions
that might be precipitated in the new situation.

:OVERLAP-PREDICATES function-definition-assoc-list

The function-definition-assoc-list pairs each agent type that the current agent might overlap (cur-
rently, share a location) with, with a function to apply in that instance. An agent-type specifier
:ALL indicates that the associated function applies to all collisions. Each such function takes as
arguments the structures of the 2 agents that are overlapping and the time of the overlap, and
determines the side-effects of the overlap. For example, the sharing of a location between 2 agents
might cause the authority of one to rise and the other to fall (as if they were exchanging power
between them).

:CREATE-P predicate

The predicate takes as arguments the agent structure and the simulated time, and returns non-nil if
the agent should create some agent(s), causing the : CREATE-FUNCTION to be invoked. For example,
if an agent survives for a certain amount of time, it might generate a clone of itself as a form of
reproduction.

:CREATE-FUNCTION function
The function takes as arguments the agent structure and the simulated time. The function should

12

include one or more calls to create-agent, and should return a list of the results of those calls
(containing the names of the created agents).

:REMOVE-P predicate

The predicate takes as arguments the agent structure and the simulated time, and returns non-nil
if the agent should remove some agent(s), possibly including itself. When non-nil, it causes the
:REMOVE-FUNCTION to be invoked. For example, if an agent is surrounded by predators, it might
remove itself because it has been captured.

:REMOVE-FUNCTION function

The function takes as arguments the agent structure and the simulated time, and returns either a
list of agent structures or a single agent structure of the agent(s) that should be removed from the
environment. For example, the mice-self function returns current agent’s data structure.

:ACTIVATE-P predicate

The predicate takes as arguments the agent structure and the simulated time, and returns
non-nil if the agent’s status should be changed to :ACTIVATED. When non-nil, it causes the
:ACTIVATE-FUNCTION to be invoked. For example, if an agent has “rested” for a while, it might
re-activate itself.

:ACTIVATE-FUNCTION function
The function takes as arguments the agent structure and the simulated time. It performs any
side-effects that are desired when an agent is being activated.

:INACTIVATE-P predicate

The predicate takes as arguments the agent structure and the simulated time, and returns
non-nil if the agent’s status should be changed to :INACTIVATED. When non-nil, it causes the
:INACTIVATE-FUNCTION to be invoked. For example, if an agent has used up all of some regener-
able resource, it might become inactive until that resource is regenerated. Note that MICE does
not automatically restrict the actions of an inactivated agent, it is up to the user to decide what it
means for an agent to be inactive.

:INACTIVATE-FUNCTION function
The function takes as arguments the agent structure and the simulated time. It performs any
side-effects that are desired when an agent is being inactivated.

3.5 An Example Agent Specification

The specification below, taken from an environment file, creates an agent named PRED1 that is
of type :PREDATOR. It can capture agents of type :PREY, and also is blocked by (cannot share a
location with) agents of type :PREY. If it and an agent that can block it attempt to move into or
through each other, their collision is resolved by a function (supplied with MICE) called authority-
collision-function that lets the agent with higher authority get its way. The authority of this agent
is specified as 10. It is created at simulated time 0 at a randomly chosen location within the 20
by 20 grid. It can communicate on either or both of channel-1 and channel-2, and has a sensor
whose range extends 10 units in each of the four directions. When MICLE determines that this
agent should provide more commands, MICE calls the function named manager-contractor-agent.

13

When this agent is drawn on the screen, it is drawn like a circular clock face with a hand pointing
to one o’clock.

(create-agent :NAME "PRED1"
:TYPE :PREDATOR
: CAPTURED-BY-TYPES ()
:CAPTURE-TYPES °’ (:PREY)
:BLOCKED-BY-TYPES (list :PREY)
:COLLISION-FUNCTION
(acons :ALL ’#’authority-collision-function nil)
:AUTHORITY 10
:CREATION-TIME O
:LOCATION (make-random-location :X 20 :Y 20)
:CHANNELS ’(channel-1 channel-2)
:SENSORS
(list (make-sensor-data
:RANGE (make-region :X-MIN -10 :Y-MIN -10
:X-MAX 10 :Y-MAX 10)))
:INVOCATION-FUNCTION ’manager-contractor-agent
:DRAW-FUNCTION ’ (clock-icon :hour 1))

4 Agent Implementation and Interface

MICE has been designed to separate agent implementations from the simulation of the environment
in which agents live. Because of the desire to allow agents with very different reasoning architectures
to reside in MICE (and with each other), we have enforced a very clearly delineated interface
between agents and MICE.

4.1 Agent Invocation

As MICE simulates the concurrent activities of agents, it must interleave the activities of the
agents based on each agent’s simulated clock time (see Section 5.3). When an agent is cho-
sen for execution, MICE executes the agent by calling the agent’s :INVOCATION-FUNCTION. The
:INVOCATION-FUNCTION is specified by the user when defining an agent as a parameter of the
create-agent function.

An agent’s invocation function takes as an argument the current agent’s data-structure. This
allows different agents to use the same invocation function since the function receives information
about which agent is actually being executed. In future CLOS-based releases, this argument to
the invocation function will change to provide better information hiding. The invocation function
should return a list of commands to MICE indicating the decisions that the agent has made about
its actions at this simulated time.

4.2 Agent Commands to MICE

Currently, agents can issue commands to MICE that represent decisions that the agents have made
regarding motion, perception, interactions, and time. These commands can include requests to
:MOVE to an adjacent location, to :ROTATE in order to change orientation, to :SCAN some
region, to :LINK to another agent, to :UNLINK from another agent, to take no action at the

14

current time (the :QUIESCENT command), to take no action for a specified length of time (the
:NULL-ACTION command), to spend a certain amount of time :REASONING, or to :STOP.

MICE allows two sources of simulated-time costs. One source is the cost associated with a
particular action, such as how long it takes to move, scan, or link. The information used to
compute these costs are specified when an agent is implemented. The other source is the cost
associated with deciding on that action. In some simulations, this source is considered negligible,
and so these costs are always 0. However, in other simulated environments, the time needed to
decide on an action adds to the overall time for taking the action, and might delay the initiation of
the action. MICE allows the latter type of time cost via the :REASONING command, whereby
an agent can specify that it has spent a certain amount of time reasoning. Alternatively, time spent
reasoning can be charged by MICE by using the *real-time-knob* described in Section 6.4.

For example, let us say an agent spent 2 simulated time units deciding to move :NORTH. Its
invocation function would return 2 commands, one indicating :REASONING for 2 time units,
and then a second requesting a :MOVE :NORTH. These are buffered by MICE and executed at
the proper time. Of course, if the agent is behaving in a very dynamic environment, it might
want to double-check between the :REASONING and :MOVE commands to make sure that
the :tMOVE is still valid. This capability must be supported by the agent itself: Once a sequence
of commands are sent to MICE, they are executed entirely before the agent’s invocation function
is once again called. However, the user can implement an agent such that it internally buffers a
sequence of commands (possibly with associated validity conditions) and issues these one at a time
to MICE. This way, the agent is given a chance to double-check the situation before issuing the
next command.

A command to MICE is essentially a request for some action to take place. These actions are
tentative because concurrent actions by several agents might conflict. For example, two agents that
cannot share locations can issue commands that would result in their being in the same location.
In this case, the agents are tentatively moved and their simulated clocks updated, but MICE later
recognizes the constraint violation and resolves it in the user-specified way (by default, it moves
them back to their original positions). The time costs of the moves, however, are not undone: The
agents have wasted some amount of time by taking conflicting actions.

The commands to MICE and their related arguments are:

:MOVE direction

The direction is currently one of :NORTH, :SOUTH, :EAST, :WEST, :FORWARD, :BACKWARD, :LEFT,
:RIGHT, or nil (stay in the same location). This causes the agent to be tentatively moved to
the adjacent location in the direction indicated (in the case of :FORWARD, :BACKWARD, :LEFT, and
:RIGHT, the direction will depend on the agent’s current orientation). The time costs of the move
are computed from the :MOVE-DATA information provided by the user when defining the agent.

:ROTATE direction number-of-quadrants

The direction is generally one of :RIGHT or :LEFT, although the agent can request an absolute
direction (:NORTH, :SOUTH, :EAST, :WEST) which will cause the agent to turn to that direction
(arbitrarily to the left if it must turn all the way around). The number-of-quadrants indicates how
far to turn (1 quadrant equals 90 degrees). This causes the agent’s orientation to be tentatively
changed. The time costs of the rotation are computed from the :ROTATE-ONE-QUADRANT slot of the
agent’s :MOVE-DATA information provided by the user when defining the agent.

:SCAN sensor

15

The sensor is a sensor data structure from the list of the agent’s sensors (see Section 3.3) or the
keyword :ALL. The time costs are computed from the sensor data structure. MICE simulates the
execution of the provided sensor by searching through the appropriate grid-elements and storing
the scanned information as a list of grid-descriptions. The agent can subsequently retrieve this
information using the function read-and-reset-scanned-data (Section 4.3).

:AFFECT location ([FEATURES nil] :DRAW-FUNCTION nil])

The location is either a location in the grid or a relative direction (see :MOVE). If the keyword
:FEATURES is specified, the features field of the grid element specified by location will be changed
to the given argument. Likewise, if the keyword :DRAW-FUNCTION is specified, the grid element’s
draw function will be changed to the given argument. This command takes no simulated time.

:LINK linked-to-agent link-type

The linked-to-agent is the name of an agent to which the current agent is attempting to link.
The link-type is currently one of :FRONT, :LEFT, :RIGHT, :BACK, :SHARED-LOC, :NORTH, :SOUTH,
:EAST, :WEST, or :NEXT-TO, indicating the spatial relationship of the linked-to-agent relative to the
current agent at the next time unit. Links to front, back, left, and right are orientation dependent,
so turning will “swing” a linked agent around. :SHARED-LOC allows an agent to link to another that
should occupy the same location. Links to north, south, east, and west keep the linked agent in
that direction from the linking agent regardless of the linking agent’s orientation. :NEXT-TO allows
linking to an adjacent agent in any direction (north, south, east, west), and from that point on
maintains the link in only that specific direction. The time costs of linking are computed from the
user-supplied information in the agent’s :LINK-COST-ALIST slot.

:UNLINK linked-to-agent

The linked-to-agent is the name of an agent from which the current agent is attempting to un-
link. The time costs of unlinking are computed from the user-supplied information in the agent’s
:UNLINK-COST-ALIST slot.

:REASONING time
The time is the simulated time spent reasoning. :REASONING only increments the agent’s
simulated time by the amount specified, and has no other effects.

:NULL-ACTION time
Increments the agent’s clock by the amount specified by time. Has no other effects.

:QUIESCENT
Same as :NULL-ACTION, except that the amount of idle time is exactly 1 time unit.

:STOP
Permanently removes the agent from the set of simulated agents.

:SEND channel-name type content ([:PRIORITY priority] [HEARER agent-name])

The agent sends a message through the channel channel-name with the priority. The message is
of type with content. User can specify any type and content of the message as arguments to this
command. If the hearer is not specified explicitly as a keyword argument, the default is for all
participants of the channel including the speaker to receive the message.

16

:RECV channel-name ([:COUNT number] [:CLEAR t-or-nil])

The agent receives at most count messages from the channel-name. If the keyword argument clear
is set to t, the remaining messages of the channel are cleared after returning at most count messages
from the channel. If the number of messages to receive from the channel is greater than count,
messages are selected based on the priority of the message. The default count value is infinity. The
agent can subsequently retrieve received messages using the function read-and-reset-received-
messages (Section 4.3).

One limitation of the current MICE commands is that a diagonal movement is a combination
of discrete steps, leading to zig-zag movement. The distance an agent travels (and the time of its
trip) between two diagonal locations is simply the manhattan distance. As a result, a round about
route (n moves north then n moves east) takes as much time as moving “diagonally” between the
locations.

Because some simulations might require intelligent route planning where the costs of moving
diagonally should be less than the manhattan movement costs, we are adding that functionality.
Currently available (but not thoroughly tested) are the additional commands:

:GOTO =z y break-p
Plots a path from the agent’s current location to location z,y and saves the sequence of individ-
ual move commands. Computes the overall movement time as the smallest integer greater than
Vitime(Ax)? + time(Ay)?. Tt then allows moves in the sequence to go “faster.” It is recommended
that :GOTO only be used when the times for movements in all directions are greater than 1,
otherwise :GOTO might cause instantaneous moves. MICE cannot guarantee correct application
of environmental constraints when moves are instantaneous. In addition, since MICE requires that
time costs be specified as integers, greater resolution can be achieved by scaling up the time costs.
For example, consider moving to an adjacent diagonal location. If moves in the x and y directions
take 1 time unit, then the diagonal move time equals the manhattan distance because v/2 is rounded
up to 2. However, if we scale all time units by a factor of 10 (moves in the x and y directions take
10 time units), then the diagonal move /200 is rounded to 15, which is a savings compared to the
manhattan distance of 20.

The break-p argument is a predicate that is evaluated before each of the stored move commands.
If the evaluation returns non-nil, then the agent’s invocation function is called and the agent
has an opportunity to insert new commands ahead of the remaining move commands. This is
used, for example, to scan for obstructions that might have moved into view since the :GOTO
command was first issued. If the :GOTO command should be aborted, the agent should return
the INTERRUPT command.

:INTERRUPT
Whenever MICE encounters the :INTERRUPT command for an agent, it discards any pending
commands for the agent.

4.3 Interface Functions to MICE

Agents should generally interface to MICE via the commands specified above. However, certain
MICE functions might allow more powerful (though potentially less structured) uses of MICE.
Other MICE functions might be useful utility functions for implementing agents. The functions
available in the MICE external interface (extint.lisp) are described below.

17

create-agent &REST keyword-arguments

Creates a new agent and incorporates it into the simulation. The keyword arguments correspond to
the fields of an agent (Section 3.3). Specifically, the new agent structure is added to two lists that
MICE keeps. One list is called *agent-schedule-queue*, which is the list of agents that MICLE
cycles through during the discrete event simulation. Only agents on that list can be invoked. The
second list is called *all-agents*, which holds structures for all agents created during a run of
MICE. The distinction is that an agent might be removed due to interactions within MICE (such
as a prey being captured and consumed by predators); the removed agent would be deleted from
the *agent-schedule-queuex. However, to maintain history, and to allow runs to be saved and
restored, that agent will remain on the *all-agents* list.

create-channel &RFEST keyword-arguments

Creates a new communication channel and incorporates it into the simulation. The keyword
arguments are explained in (Section 3.2). The resulting structure gets added to the list
*mice-channels.

agent-structure ageni-name
Returns the agent data-structure for the agent whose name matches the symbol agent-name.

read-and-reset-scan-data &KLY (reset-value nil) (agent *current-agent™)

Returns the list of grid-descriptions generated by the last :SCAN command to MICE. Each
grid-description has information about its location (grid-description$coordinates), the agents
at the location (grid-description$agents), and the features of the corresponding grid-element
(grid-description$features). read-and-reset-scan-data also sets the buffer to reset-value af-
ter reading it. Note that using a different reset value can distinguish between having scanned since
the last read-and-reset-scan-data but nothing was there (nil), versus not having scanned since the
last read-and-reset-scan-data (reset-value). In particular, in cases where the same agent is invoked
multiple times at the same discrete time (because, for example, scanning is simulated to take no
time), such distinctions can be crucial to avoid infinite loops.

read-and-reset-received-messages &KLY (reset-value :EMPTY) (agent *current-agent™)
Returns the list of messages generated by the last :RECV command to MICE. Clears the buffer and
resets the buffer with the reset-value. If no messages are generated by the last :RECV command,
it returns nil. If the function is called subsequently at the same discrete time without another
:RECYV command, it returns current reset-value.

get-grid-element location EOPTIONAL (create nil) EKEY z y

Returns the grid-element for the specified location (or for location (x,y) if provided). If no grid-
element exists for the location and the optional create argument is non-nil, then a new grid-element
is created and returned.

find-agent-location agent EOPTIONAL (time *current-time*)

Returns the location of the agent at the given time. If the time is not supplied, returns the current
location of the agent.

18

find-agent-orientation agent &OPTIONAL (time *current-time*)
Returns the orientation of the agent at the given time. If the time is not supplied, returns the
current orientation of the agent.

find-agent-status agent EOPTIONAL (time *current-time*)
Returns the status of the agent at the given time. If the time is not supplied, returns the current
status of the agent.

find-agent-linkages agent EOPTIONAL (time *current-time*)
Currently returns t if the agent is linked to at least one other agent at the given time (or at the
current time if the ¢time argument is not specified).

find-agent-other agent EOPTIONAL (time *current-time*)

Sometimes, the user wants to have recorded, for each simulated time, something else about each
agent. To do this,
the user should set the variable *other-state-history-information-function#* to a function
that returns whatever state information the user wants recorded for the agent at each simulated
time. Then the function find-agent-other can be used to retrieve this information. find-agent-
other currently returns t if the agent is linked to at least one other agent at the given time (or at
the current time if the ¢ime argument is not specified).

move-agent agent-structure direction
Moves the agent in the desired direction. Returns the simulated time costs for that movement.

compute-new-location old-location direction
Given an old-location and a direction, generates a new location data-structure for the location
adjacent to the old-location in the specified direction.

legal-location-p location &KLY (agent nil)

Checks to see whether the location is within the grid boundary. If the agent parameter is specified
(an agent data-structure), it also checks to see if the agent is allowed in the location, based on the
features of that location, by calling agent-allowed-in-location-p.

agent-allowed-in-location-p location agent
Checks to see if the agent (given as an agent data-structure) is allowed in the location, based on
the features of the location.

legal-region-p region &KEY (agent nil) z-min z-maz y-min y-maz

Checks to see whether the region is within the grid boundary. Returns the allowable portion of
the region, or nil if the entire region falls outside of the grid boundary. If the agent parameter is
specified (an agent data-structure), it also checks to see if the agent is allowed in every location
within the region, based on the features of the locations, by calling agent-allowed-in-region-p
with the allowable portion of the region.

agent-allowed-in-region-p region agent EKFEY z-min x-max y-min y-max

Checks to see if the agent (given as an agent data-structure) is allowed in every location within
the region (based on the features of the locations).

19

location-in-region-p location region
Checks to see if the location is in the region.

regions-overlap-p regionl region2
Checks to see if any locations are common to regionl and region2.

find-movement-time agent direction
Determines the time costs for the agent (given as an agent data-structure) to move in the given
direction.

rotate agent direction number-of-quadrants

Changes the orientation of the agent by rotating it the given number of times in the direction
provided. Returns the time costs for the rotation (the number of quadrants times the agent’s
rotate cost/quadrant).

null-action agent time
Increments the agent’s clock by the provided amount of time.

scan-mice-region scan-regions sensor-location &KFEY (interesting-p # live-agent-at-location-p)
obstructed-by x-min y-min r-mazx y-mazx

Scan-regions is a list of regions to be investigated, sensor-location is the current location of the
sensor performing the scanning (used to determine which parts of the region are obstructed),
interesting-p is a predicate used to test the features of a location to decide whether the location is
of interest, obstructed-by is an optional predicate used to test the features of a location to decide
whether the sensor can penetrate through the location, and a-min, y-min, z-maz, and y-maz
provide an alternative means for specifying the region for inspection. This function returns a list
of grid-descriptions within the specified region that meet the interesting-p criteria and which are
not obstructed by other objects in the region.

live-agent-at-location-p grid-element
Checks the grid-element given (corresponding to a particular location) and returns non-nil if any
agents in that location currently have a status of :ACTIVE.

scan-for-agent-grid-descriptions agent

Given an agent doing the scanning, checks its list of sensors and its current location and calls scan-
mice-region with that information (all other arguments to scan-mice-region receive their default
values).

get-visible-grids z-sensor y-sensor x-min x-max y-min y-maz interesting-p obstructed-by
Returns grid-descriptions for all interesting locations within the region defined by (x-min x-max
y-min y-max) that are visible from the sensor location (x-sensor y-sensor). (This function currently
contains a constant for the diameter of the obstructions. This constant will become a specifiable
parameter in future releases of MICE.)

20

link [linker linkee link-type

Creates a link between the linker and the linkee (where linkee can be a single agent or a list of
agents). The link-type specifies the position of the linkee relative to the linker’s orientation. It is
assumed that, once linked, the linker has authority over the linkee, such that if the linker changes
its orientation, the linkee is moved correspondingly.

unlink linker linkee
Removes all links between the linker and the linkee (where linkee can be a single agent or a list of
agents).

send-message agent channel-name type content EKEY (priority 0) (hearer :ALL)

The agent sends a message through the channel channel-name with the priority. The message
is of type with content. User can specify any type and content of the message as arguments of
this function. If the hearer (an agent name) is not specified explicitly as a keyword argument, all
participants of the channel including the speaker will receive messages.

recv-messages agent channel-name EKEY (count most-positive-fiznum) (clear nil)

The agent receives at most count messages from the channel-name. If the keyword argument clear
is set to t, the remaining messages of the channel are cleared after returning at most count messages
from the channel. If the number of messages to receive from the channel is greater than count,
messages are selected based on the priority of the message. The default count value is infinity.

select-messages messages KLY (type :ALL) (status :SUCCESS)

select-messages is an auxiliary function for convenient handling of received messages. Since
the recv-messages function just returns a list of messages, the user may want to select only
part of the messages of type and status. type is the user specified value as an argument of the
send-message function and the status is set by MICE during transmission. The possible values
for status are :0VER-CAPACITY, :0UT-OF-RANGE, :0BSTRUCTED, :FAILURE and :SUCCESS. The
status of :0VER-CAPACITY, :0UT-0F-RANGE, :0BSTRUCTED and :FAILURE represent the reasons for
the transmission failure. Fspecially, :FAILURE messages occur when the reliability value of the
channel is less than 1.0. The messages successfully delivered over the channel have :SUCCESS
status. select-messages returns two values using multiple values. The first value is the list of
selected messages and the second value is the list of remaining messages after selection.

4.4 Messages

When an agent issues a :SEND command, MICE makes a message and transmits it over the
channel. Thus, the read-and-reset-received-messages function following the :RECV command
returns a list of messages of the structure MICE makes. The slots of the structure can be accessed
using message$ prefix to the slot name. The available slots are speaker, hearer, type, content,
priority, channel-name, time-created, and status. The speaker and hearer are the names of the
sender and receiver respectively. The type, content, priority and channel-name are those that are
specified as parameters of the :SEND command. The time-created slot indicates the simulated
time when the message is created. The status is the status of message delivery. A message that
is successfully delivered will have :SUCCESS as its status, and returned messages will have one of
:0VER-CAPACITY, :0UT-0F-RANGE, : 0BSTRUCTED, :FAILURE as a status (see Section 3.2).

21

4.5 Examples of Invocation Functions

Example 1. TFollowing is an example of invocation function by which the agent sends and receives
a message to other agents and then moves randomly.

(defun communication-agent (agent)
(let ((messages (read-and-reset-received-messages :RESET-VALUE :EMPTY)))
(cond ((eq :EMPTY messages)
¢ ((:RECV channel-1)))
(t
;3 print received messages
(mapcar #’(lambda (message)
(format t ""%Time “a: “a <== “a: content “a, status ~a"
*current-timesx
(message$hearer message)
(message$speaker message)
(message$content message)
(message$status message)))
messages)
;; Send a message containing the sender’s name and current-time.
¢((:SEND channel-1 test ,(list (agent$name agent) *current-timex))
(:MOVE , (nth (random 4) ’(:NORTH :SOUTH :EAST :WEST))))))))

Example 2. Following is an example of invocation function by which the agent interleaves scan-
ning and moving. In moving, it randomly chooses among directions that are not blocked.

(defun wandering-agent (agent)
(let ((scan-data (read-and-reset-scanned-data)))
(if scan-data
(let* ((agent-blockers (agent$blocked-by-types agent))

(agent-location (agent$location agent))

(loc-x (location$x agent-location))

(loc-y (location$y agent-location))

(valid-directions-and-locations

(1ist (list :EAST (make-location :X (1+ loc-x) :Y loc-y))
(1ist :WEST (make-location :X (1- loc-x) :Y loc-y))
(1ist :NORTH (make-location :X loc-x :Y (1- loc-y)))
(1ist :SOUTH (make-location :X loc-x :Y (1+ loc-y))))))
(dolist (grid-desc scan-data)
(let ((valid-dir-and-loc
(some
#’ (lambda (valid-one)
(when (equalp (second valid-one)
(grid-description$coordinates grid-desc))
valid-one))
valid-directions-and-locations)))

22

(when (and valid-dir-and-loc
(some
#’ (lambda (near-agent)
(member (agent$type near-agent) agent-blockers))
(grid-description$agents grid-desc)))
(setf valid-directions-and-locations
(delete valid-dir-and-loc
valid-directions-and-locations
:TEST ’equalp)))))
‘((:MOVE ,(first (nth (random (list-length
valid-directions-and-locations))
valid-directions-and-locations)))))
“((:SCAN :ALL)))))

5 MICE Execution

Having decided on a simulated environment for the agents and having implemented the agents’
decisionmaking procedures, we can continue on to run MICE.

5.1 The Environment File

The information about the grid and the specific agents in an environment are stored in a file called
an environment file. This file has the following parts (see Section 7 for a more complete example).

Simulation Data

A global variable called *simulation-data* points to a structure that contains information about
the simulated world. In particular, it has a field called overall-region that specifies the region
encompassed by the grid. By default, the grid has locations from 0 to 20 (inclusive) in the z and
y dimensions. To modify the grid to a 10 by 10 size, the environment file would have an entry:

(setf (simulation-data$overall-region *simulation-datax)
(make-region :X-MIN O :Y-MIN O :X-MAX 10 :Y-MAX 10))

Grid Features

Next, any features of the grid (other than agents) are defined. For example, if we wanted to put a
feature at location (10,10) that would prevent agents of type :PREY from occupying that location,
we could add a feature to the grid-element at that location that associates the key :BLOCKED-TYPES
with the agent type :PREY:

(setf (grid-element$features
(get-grid-element (make-location :X 10 :Y 10) t))
(acons :BLOCKED-TYPES (list :PREY) nil))

Agents

Finally, we would instruct MICE to make the agents to populate the environment. For example,
we might make an agent named sitting-duck of type :PREY, who begins in location (0,0), takes 2
time units to move in any direction, is captured by :PREDATOR agents, is graphically depicted as a
filled square, and has an invocation-function called prey-invocation-function.

23

(create-agent :NAME ’SITTING-DUCK
:TYPE :PREY
:LOCATION (make-location :X O :Y 0)
:BLOCKED-BY-TYPES (list :PREDATOR :PREY)
:MOVE-DATA (make-move-data :NORTH 2 :SOUTH 2 :EAST 2 :WEST 2)
:CAPTURED-BY-TYPES (list :PREDATOR)
:DRAW-FUNCTION ’ (square-icon :FILLED t)
:INVOCATION-FUNCTION #’prey-invocation-function)

5.2 Starting MICE

Once an environment file has been prepared, MICE can be invoked with the mice function:

mice environment-file EKEY (time-limit 200)
Initiates a MICE run. Reads in the specified environment-file, and then simulates the actions of the
agents. The time-limit keyword argument indicates the maximum simulated time that is allowed.

5.3 MICE Activities

At any given time, MICE invokes the agent with the least advanced simulated clock. If there
is a tie, it will by default give preference to the agent with the lowest authority. The pred-
icate used to sort agents for execution is user-modifiable, and is bound to the global variable
*xsort-agent-predicatex.

After it executes an agent, MICE checks to see what simulated time the agent with the least-
advanced clock is at, and if this is greater than it was before the agent executed (MICE maintains
a “global” clock to store this value), then MICE must resolve any conflicting actions that might
have occurred between the previous value of the global clock and the current global clock time. It
steps through the intervening times, and for each time:

1. It checks any actions initiated by the agents at that time and the resulting state of the agents
as a consequence of those actions.

2. It resolves any conflicts between the actions (see Section 3.4).

3. It checks the resolved situation against the set of possible agent interactions. For example,
it checks the predicates for removing agents, such as when a :PREY agent is surrounded by
:PREDATOR agents.

4. It takes any actions triggered by the situation.

5. If any actions were taken in step 4, it goes back to step 3. Otherwise, it is done.

5.4 MICE Termination

The criteria for termination are user-specified. Sometimes we want MICE to stop when no agent
has moved for some fixed amount of time. Other times we want MICE to stop when no goals are
left to achieve (such as when all of the :PREDATOR agents have captured all of the :PREY agents).
Currently, the user defines a predicate called mice-continue-p that specifies the conditions under
which MICE should continue the simulation. By default, the function continues until either the
time-limit has been reached or until no agent has moved.

24

RHHR.
.. J 333
1849
RrRCcCT<tT
rsrcsctst
.RCRTCRC

Figure 3: Text output of example icons found in testicons.env.

6 User Interface

6.1 Graphics

The graphical icons which MICE uses to represent agents and grid features are drawn using a
set of device-independent graphics calls, which then are translated into the appropriate device-
dependent calls based on the “graphics mode”. We have written the device-dependent routines
for X-windows, the Macintosh, and the TI Explorers. We also have a set of Postscript routines
that can produce accurate Postscript depictions of MICE simulation grids, so that printing MICE
grids or including grid images in INTRX documents is simple (as seen in Figure 2 on Page 11). The
di-set-graphics-mode function sets the graphics mode to one of the following symbols: ’X, *TI,
*MAC, °PS.

The default width of the graphics display is held in the global variable *display-width#*. The
size of the display window can be changed by setting this variable (in approximate inches) before
running MICE. The Macintosh version of MICE allows resizing of the window during execution by
dragging the corner of the display window.

If no graphics display is available, a simple textual representation of the MICE grid can be
obtained by setting *graphics?* to nil. MICE will then print to the screen a matrix with dots (.s)
in empty grid locations and single characters in filled locations. The single character will be the
first character of a :LABEL that is specified in the draw-function call, or a character representing the
icon function (e.g., “R” for a rectangle-icon). Figure 3 shows the same simulation grid as Figure 2,
in the textual representation.

If you wish to turn off all forms of the MICE grid display, for example while running multiple
simulations (more quickly) in the background, set *display?* to nil.

To save the PostScript code for a single grid image, use:

save-grid-ps &key (time *current-time*) (file "<time>.lps”))
This creates a postscript file that can be printed directly, or included into a IATpX document using
the psfig macros.

6.2 Saving and Restoring Runs

Experimental runs can be saved to a file and later restored and redisplayed. MICE offers two options
for saving, restoring and redisplaying runs: one option saves the device independent graphics calls
needed to reproduce the graphical description of a simulation run, the other saves MICE data
structures including the entire state history for each agent.

25

save-mice-graphics file

This function saves the device independent graphics calls needed to reproduce the graphical de-
piction of a MICE simulation run. Note that even if the graphic display is disabled by setting
display? to nil, the graphics calls are still recorded so that, when running multiple simulations
in the background, you can have a program detect interesting results and save the simulation for
later examination. However, if you set *graphics?* to nil, the device-independent graphics calls
are never made, and thus cannot be saved with this option.

save-mice-history file

This function saves the MICE data structures into file including the definition of each agent, the
features of the grid, and the history of commands executed, locations occupied, links created, and
SO on.

restore-mice-graphics file
This function loads the device independent graphics calls contained in file so that they can be
redisplayed by calling redisplay-graphics.

restore-mice-history file
This function loads the data structures contained in file so that they can either be inspected or
redisplayed by calling redisplay-history.

redisplay-graphics &key (start 0) end (sleep-time 0) (breaks nil)

This function redisplays a MICE simulation run using the set of device independent graphics
routines that were either just executed or just restored. The display will begin at the specified
:START time and end at the specified :END time (or at the end of the simulation run). If the
simulation is being redisplayed too quickly, use :SLEEP-TIME to set the number of seconds to pause
between each time step. Use :BREAKS to specify a list of times at which the redisplay should pause,
waiting for a keystroke to continue.

redisplay-history &key (start 0) end (sleep-time 0) (breaks nil)
This function redisplays a MICE simulation run using the MICE data structures from the run just
executed or just restored. The parameters are identical to those of redisplay-graphics above.

6.3 Statistical Measures

Currently, MICE can optionally maintain a small number of statistics, corresponding to the number
of moves that agents attempt and the number of these that are successful (do not lead to conflict).
More types of measuring will be added in future releases.

6.4 Simulating Real-Time

MICE has a variable called *real-time-knob* that can be used as a simple mechanism for reward-
ing (penalizing) agents for making decisions quickly (slowly). By default, the *real-time-knobx
is mil, which disables it. If it is non-nil, it should contain a number. This number is used by MICE
to map actual runtime into simulated time units.

Specifically, MICE records the time (using get-internal-real-time) when the invocation-function
for an agent is called and when it returns, and computes the total elapsed time for invocation in
seconds. This value is multiplied by the value of *real-time-knob*, and the result is rounded

26

to an integer value. MICE then inserts, onto the front of the list of commands returned by the
invocation function, a :REASONING command for the integer value computed. So, for example,
if an agent spends 5.4 seconds generating commands for MICE, and *real-time-knob* is set to
0.5, then the commands the agent has generated are postponed by 3 simulated time units.

6.5 Debugging
MICE has a few variables that can be used to help in debugging. These include:

xverbose?* If non-nil, MICE sends to text output an indication of what command each agent is
sending to MICE.

debug? If non-nil, MICE announces each invocation of an agent.
xcollision-verbosex If non-nil, MICE informs the user when two agents have collided.

*1link-verbosex If non-nil, MICE informs the user when a linking activity has been attempted.

7 Implementation Examples

In the following subsections, we illustrate through very simple examples how the MICE environ-
ment, domain predicates, and agents can be defined. Users are referred to additional examples
accompanying the MICE system.

27

7.1 Example Environment File

This file gives an example of a simple environment where four predators attempt to capture one
prey agent. To make matters more interesting, there is a wall running north-south in the middle
of the grid that blocks predators but does not block prey.

3395555535555 5535555355533 3533353533533 3535333333353 333333 3353533333333 335333335333)

H A SIMPLE PREDATOR-PREY ENVIRONMENT

3395555535555 5535555355533 3533353533533 3535333333353 333333 3353533333333 335333335333)

; First, modify the grid to represent a north-south wall in the middle of
; the grid. This wall blocks out predators, but prey can move through it

(setf (grid-element$features (get-grid-element (make-location :x 10 :y 8) t))
(setf (grid-element$features (get-grid-element (make-location :x 10 :y 9) t))
(setf (grid-element$features (get-grid-element (make-location :x 10 :y 10) t))
(setf (grid-element$features (get-grid-element (make-location :x 10 :y 11) t))
(setf (grid-element$features (get-grid-element (make-location :x 10 :y 12) t))
(acons :BLOCKED-TYPES (list :PREDATOR) nil)))))))

; Also, set the draw-function for these grid locations to be square icons

(setf (grid-element$draw-function (get-grid-element
(make-location :x 10 :y 8) t))
(setf (grid-element$draw-function (get-grid-element
(make-location :x 10 :y 9) t))
(setf (grid-element$draw-function (get-grid-element
(make-location :x 10 :y 10) t))
(setf (grid-element$draw-function (get-grid-element
(make-location :x 10 :y 11) t))
(setf (grid-element$draw-function (get-grid-element
(make-location :x 10 :y 12) t))
>’ (square-icon)))))))

; Next, create a communication channel

(create-channel :NAME ’channel-1
:AGENTS ’(PRED1 PRED2 PRED3 PRED4)
:DELAY 1
:CAPACITY nil
:RELIABILITY 1.0
:RANGE NIL
:ORIENTATION-SENSITIVE-P :UNKNOWN
:0BSTRUCTED-BY nil)

; Now, create a prey agent. This agent begins in the center of the

; environment. It can be captured by predators and cannot capture

; anything. It’s REMOVE-P predicate indicates that it should be removed
; from the environment when it is captured, and its REMOVE-FUNCTION

; simply returns its own name as the agent to remove. Its DRAW-FUNCTION

28

; gives 1t a square clock-face representation with the label "P".

; It is blocked by (cannot share a location with or pass through) other

; prey and predator agents, it requires 2 simulated time units to move in
; any direction, and it has limited sensors that only sense locations at
; most 2 away from the agent in all directions (i.e. it senses the 5 by 5
; region around and including its location).

(create-agent :NAME ’PREY1
:TYPE :PREY
:LOCATION (make-location :X 10 :Y 10)
:CAPTURED-BY-TYPES ’ (:PREDATOR)
:CAPTURE-TYPES ()
:REMOVE-P ’captured-agent-p
:REMOVE-FUNCTION ’mice-self
:COLLISION-FUNCTION ’collision—-function
:DRAW-FUNCTION ’(rectangle-icon :label "P'")
:BLOCKED-BY-TYPES (list :PREDATOR :PREY)
:MOVE-DATA (make-move-data :NORTH 2 :SOUTH 2 :EAST 2 :WEST 2)
:INVOCATION-FUNCTION #’prey-invocation-function
: SENSORS
(1list (make-sensor-data

:RANGE (make-region :X-MIN -2 :Y-MIN -2
:X-MAX 2 :Y-MAX 2))))

; Finally, create four predator agents. Each agent begins at a different

; corner of the environment. Each can capture prey and cannot be captured.

; Each has a DRAW-FUNCTION that represents predator i as a round clock-face

; with a hand pointing to time i. Each is blocked by (cannot share a location
; with or pass through) prey and other predator agents. Each requires 1

; simulated time unit to move in any direction, and has sensors that sense

; locations at most 10 away from the agent in all directions.

(create-agent :NAME ’PREDATOR1
:TYPE :PREDATOR
:LOCATION (make-location :X 0 :Y 0)
:CAPTURED-BY-TYPES ’ ()
:CAPTURE-TYPES ’ (:PREY)
:COLLISION-FUNCTION ’collision-function
:DRAW-FUNCTION ’(clock-icon :hour 1)
:BLOCKED-BY-TYPES (list :PREDATOR :PREY)
:MOVE-DATA (make-move-data :NORTH 1 :SOUTH 1 :EAST 1 :WEST 1)
:INVOCATION-FUNCTION #’predator—invocation—-function
:CHANNELS ’(channel-1)
:SENSORS
(1ist (make-sensor—data

:RANGE (make-region :X-MIN -10 :Y-MIN -10
:X-MAX 10 :Y-MAX 10))))

(create-agent :NAME ’PREDATOR2
:TYPE :PREDATOR
:LOCATION (make-location :X 20 :Y 0)
:CAPTURED-BY-TYPES ’ ()
:CAPTURE-TYPES ’ (:PREY)
:COLLISION-FUNCTION ’collision-function

29

:DRAW-FUNCTION ’(clock-icon :hour 2)
:BLOCKED-BY-TYPES (list :PREDATOR :PREY)
:MOVE-DATA (make-move-data :NORTH 1 :SOUTH 1 :EAST 1 :WEST 1)
:INVOCATION-FUNCTION #’predator—invocation—-function
:CHANNELS ’(channel-1)
:SENSORS
(1ist (make-sensor—data
:RANGE (make-region :X-MIN -10 :Y-MIN -10
:X-MAX 10 :Y-MAX 10))))

(create-agent :NAME ’PREDATOR3
:TYPE :PREDATOR
:LOCATION (make-location :X O :Y 20)
:CAPTURED-BY-TYPES ’ ()
:CAPTURE-TYPES ’ (:PREY)
:COLLISION-FUNCTION ’collision-function
:DRAW-FUNCTION ’(clock-icon :hour 3)
:BLOCKED-BY-TYPES (list :PREDATOR :PREY)
:MOVE-DATA (make-move-data :NORTH 1 :SOUTH 1 :EAST 1 :WEST 1)
:INVOCATION-FUNCTION #’predator—invocation—-function
:CHANNELS ’(channel-1)
:SENSORS
(1ist (make-sensor—data

:RANGE (make-region :X-MIN -10 :Y-MIN -10
:X-MAX 10 :Y-MAX 10))))

(create-agent :NAME ’PREDATOR4
:TYPE :PREDATOR
:LOCATION (make-location :X 20 :Y 20)
:CAPTURED-BY-TYPES ’ ()
:CAPTURE-TYPES ’ (:PREY)
:COLLISION-FUNCTION ’collision-function
:DRAW-FUNCTION ’(clock-icon :hour 4)
:BLOCKED-BY-TYPES (list :PREDATOR :PREY)
:MOVE-DATA (make-move-data :NORTH 1 :SOUTH 1 :EAST 1 :WEST 1)
:INVOCATION-FUNCTION #’predator—invocation—-function
:CHANNELS ’(channel-1)
:SENSORS
(1ist (make-sensor—data

:RANGE (make-region :X-MIN -10 :Y-MIN -10
:X-MAX 10 :Y-MAX 10))))

;33 End of Environment File

30

7.2 Example Domain Predicates

Below are some predicates used in the simple predator/prey environment described in the environ-
ment file.

; Returns non-nil if the agent is surrounded by agents by which this agent
; can be captured. Agent is an agent data-structure; time is the agent’s
; current time. *agent-schedule-queue* is the list of currently active

; agents maintained by MICE.

(defun captured-agent-p (agent time)
(let ((surrounding-agents
(find-neighboring-agents agent *agent-schedule-queue* time)))
(and (>= (length surrounding-agents) 4)
(every
#’(lambda (direction)
(let ((new-location
(compute-new-location (agent$location agent) direction)))
(some #’(lambda (a)
(and (equalp (agent$location a) new-location)
(member (agent$type a)
(agent$captured-by-types agent))))
surrounding-agents)))
>(:NORTH :SOUTH :EAST :WEST)))))

; Returns a list of all of the agents in the others argument that are in
; locations adjacent to the given agent at the specified time.

(defun find-neighboring-agents (agent others time)
(cond ((null others) nil)

((= (+ (abs (- (location$x (find-agent-location agent time))

(location$x (find-agent-location (first others) time))))
(abs (- (location$y (find-agent-location agent time))
(location$y (find-agent-location (first others) time)))))
)
(cons (first others) (find-neighboring-agents agent (rest others) time)))
(t (find-neighboring-agents agent (rest others) time))))

; Moves agents that have collided and block each other back to their
; previous locations.

(defun collision-function (agentl agent2 time)
"COLLISION-FUNCTION agentl agent2 time

Assumes that agentl and agent2 have passed through each other or are
attempting to occupy the same location. If the agents block each other,

31

moves them back to where they were at previous time, otherwise leaves them

alone."

(when (or (member (agent$type agentl) (agent$blocked-by-types agent2))
(member (agent$type agent2) (agent$blocked-by-types agentl)))
; find which of the agents moved to cause the problem (possibly both)
(let ((conflict-agents
(mapcan #’(lambda (agent)
(when (not (equalp (find-agent-location agent time)
(find-agent-location agent
(1- time))))
(1ist agent))))))
; move each of the agents to where it was at the previous time
(move-agents-to-location-at-given-time conflict-agents (1- time))

t)))

32

7.3 Example Agent Implementation

An agent’s : INVOCATION-FUNCTION can be any lisp-callable function. For Al research, the function
should employ Al techniques to make appropriate decisions. Because such functionality can be very
complex, we instead here present a function that simply queries the user for some action, and then
passes the command back to MICE in the proper format. More complex examples are bundled
with the code, including a complete example of a predator-prey scenario in which the predators
negotiate using the Contract-Net protocol.

; Human-agent is an invocation-function that simply queries the user for some
; action and returns the appropriate command in the proper format for MICE.

(defun human-agent (agent)
(format t "~%Select command for agent “a"%" (agent$name agent))
(format t "Move, Link, Unlink, Scan, Reason, sTop, Direction or Quiescent ")
(let ((response (char-upcase (read-char))))
(cond
((eql response #\M)
(format t ""%Select direction to move (N, S, E, W). ")
(setf response (char-upcase (read-char)))
(format t "~a"%" response)
(cond ((eql response #\N)
‘((:MOVE :NORTH)))
((eql response #\S)
“((:MOVE :SQUTH)))
((eql response #\E)
“((:MOVE :EAST)))
((eql response #\W)
“((:MOVE :WEST)))
(t “((:MOVE nil)))))

((eql response #\L)
(format t
"~%Select link type: Front, Left, Right, Back, Next-to or Shared-loc. ")
(let* ((response (char-upcase (read-char)))
(link-type (case response
(#\F :FRONT)

(#\L :LEFT)
(#\R :RIGHT)
(#\B :BACK)

(#\N :NEXT-TO)
(#\S :SHARED-LOC)
(otherwise (cerror "Default to :NEXT-TO."
"Illegal link type selected.")
:NEXT-TO0))))
(format t "“/Enter agent to create “a link with. " link-type)
(setf response (string-upcase (read-line)))
“((:LINK ,(intern response) ,link-type))))

((eql response #\U)
(format t "“%Enter agent to unlink from. ")

33

(setf response (read-line))
“((:UNLINK ,(intern (string-upcase response)))))

((eql response #\S)

(format t "“%Enter time spent scanning. ")
(setf response (read-line))

“((:SCAN , (string-to-int response))))

((eql response #\R)

(format t "“%Enter time spent reasoning. ")
(setf response (read-line))

“((:REASONING ,(string-to-int response))))

((eql response #\T)
(format t "“%Agent terminating. %")
:STOP)

((eql response #\Q)
(format t ""%Agent quiescent.”%")
:QUIESCENT)

((eql response #\D)
(format t "“%Enter direction of rotation. (Right, Left) ")
(let ((direction (if (eql (char-upcase (read-char)) #\L) :LEFT :RIGHT)))

(format t "~“%Enter number of quadrants to rotate “a. " direction)
‘((:ROTATE ,direction ,(- (read-char) (int-char #\0))))))

(t (format t "~"%Illegal selection.”%")))))

34

