
0018-9162/01/$10.00 © 2001 IEEE July 2001 39

dinate its own actions with those of other agents.
Coordination does not imply cooperation: An effec-

tive competitor will coordinate decisions to maximize
its advantage against an opponent, such as a company
timing a product promotion to undercut a rival. Nor
does it imply reciprocation: An agent can coordinate
its actions with another agent unaware of its presence,
as when an automobile driver passes a second driver
whose mind is entirely elsewhere.

Not surprisingly, various coordination strategies for
computational agents have emerged over the years. It
does not seem possible, however, to devise a coordi-
nation strategy that works well under all circum-
stances; if such a strategy existed, human societies
would substitute it for the myriad constructs employed
today such as corporations, governments, markets,
teams, committees, professional societies, and mailing
groups. Whatever strategy we adopt, certain situations
can stress it to the breaking point.

Any proposed coordination strategy must therefore
address how it scales to increasingly stressful situa-
tions. To map the space of potential coordination
strategies, we must therefore identify important dimen-
sions along which they must scale and then evaluate
their responses to stresses along those dimensions.

DIMENSIONS OF COORDINATION STRESS
An agent coordination strategy must consider the

agent population, task environment, and solution. For
each of these properties, we consider three of many
important dimensions; although these dimensions are
not necessarily orthogonal, treating them as such helps
characterize the coordination challenges.

C O V E R F E A T U R E

Scaling Up Agent
Coordination
Strategies

D
eploying intelligent agents to do peoples’
bidding in environments ranging from
Internet marketplaces to Mars has recently
received much attention. Exactly what an
agent is and in what sense a computational

agent can behave intelligently remain the subject of
considerable debate. However, most would agree that
coordination—an agent’s fundamental capability to
decide on its own actions in the context of the activ-
ities of other agents around it—is a central concern
of intelligent agency. Without coordination, agents
can unintentionally waste their efforts and squander
resources or fail to accomplish objectives that require
collective effort.

Advances in agent-oriented software engineering
make it possible to develop complex, distributed sys-
tems, but the component agents must be able to act
and interact flexibly.1 Choosing an effective coordina-
tion strategy requires identifying the dimensions in
which the strategy needs to scale and determining how
well it responds to being stressed along those dimen-
sions. Characterizing agent population properties,
their task environments, and their collective behavior
is key to understanding the capabilities and limitations
of coordination strategies that support flexible com-
ponent agent interaction.

AGENT COORDINATION
With few exceptions, an agent dispatched to an envi-

ronment will likely share it with other agents. Some
proposed strategies for planetary exploration, for
example, involve sending a team of robots. Thus, a
fundamental agent requirement is the ability to coor-

The value of an intelligent agent coordination strategy lies in how well
it scales along various dimensions of stress. Understanding the agent
population, its task environment, and expectations about its collective
behavior are central to mapping the space of potential approaches.

Edmund H.
Durfee
University of
Michigan

40 Computer

Agent population properties
The most obvious properties that impact

coordination are those of the agent population.
Certainly, one challenge in scaling any coordi-
nation strategy is handling more agents.
Coordination strategies that rely, for example,
on a centralized coordinator to direct the
efforts of other agents can quickly degrade as
the coordinator becomes incapable of pro-
cessing the interactions of an increasing num-
ber of potentially interacting agents. Other
important agent properties include hetero-
geneity and complexity.

Quantity. If each agent interacts with every
other agent, the number of paired interactions

will grow quadratically with the number of agents.
Because interactions often occur within the context
of ever-larger groups of agents, not just pairs, the
coordination problem can increase exponentially: If
every agent could choose among b actions, each
potentially having a different impact on other agents,
the space of all possible action combinations would
be bn for n agents. Even if the coordination search
problem was divided equally among the n agents, a
problem one-nth of bn will still exceed an agent’s com-
putational limitations as n grows.

Heterogeneity. In addition to having different goals,
beliefs, or expertise, agents also can have various
communication languages, ontologies, or internal
architectures. Whether a coordination strategy scales
to increasingly heterogeneous populations depends
on the degree to which it expects or enables agents to
communicate with, share their abilities with, and
agree with one another.

Complexity. In terms of agent properties, complexity
refers to how hard it is to predict what an inherently
versatile agent will do. One characteristic of an intel-
ligent agent is the ability to flexibly decide for itself
what goals to pursue at a given time and how to pur-
sue them. Coordinating with less complex agents that
single-mindedly perform a specialized task is easier
because they are more predictable. Coupling their
complexity with the possibility that inherently versa-
tile agents will have overlapping spheres of interest
and ability can put enormous stress on an agent coor-
dination strategy.

Task-environment properties
The environment in which agents operate and the

tasks they are expected to accomplish within it are
major considerations in developing or choosing a
coordination strategy. Real task environments often
introduce complications that blur the understanding
of a coordination strategy. For example, differences
in performance might be due to the quality of knowl-
edge given to individual agents rather than to the effi-

cacy of the coordination strategy. For this reason,
researchers often use idealized task domains such as
the Prisoner’s Dilemma, distributed sensor networks
and transport problems.2 As the “Transport Problems”
sidebar indicates, even in an abstract task environ-
ment, there are numerous possible dimensions for
scaling the difficulty of coordination.

Degree of interaction. The environment or task can
lead to interactions that materially impact the agents.
Coordination requires exerting some control over
interactions, and greater interaction implies the need
for more coordination. Suppose that an interaction
involves an issue that concerns more than one agent—
for example, who gets to use a resource, the status of
some feature of the world, or who is supposed to do
what task. The degree of interaction increases with
the number of agents concerned with the same issues
and as more issues become a concern to each agent.
Consequently, settling some issues commits agents to
interactions that in turn impact how they should set-
tle other issues. As the web of dependencies grows,
coordination strategies can have difficulty scaling.

Dynamics. A multiagent setting in which different
agents monitor only portions of the environment, and
each agent can change its mind about what goals to
pursue and how to pursue them, complicates the
dynamics of coping with environmental changes. In
more static task environments, agents are more likely
to converge on coordinated agreements, but coordi-
nation strategies that scale to highly dynamic task
environments are relatively uncommon because the
solutions they generate cannot keep up with changes
in the task environment.

Distributivity. In some task environments, the agents
are conceptually collected together and tasks origi-
nate at one point. In other task environments, the
agents are highly distributed and tasks are inherently
distributed among them. Distributivity stresses a
coordination strategy because it increases uncertainty
about which agents are currently sharing the task
environment and what, if anything, each agent is or
should be doing.

Solution properties
Coordination strategies addressing scaling issues

must still yield satisfactory solutions, and we can
make solution criteria themselves more stringent along
dimensions that include quality, robustness, and over-
head limitations.

Quality. We can measure a solution’s quality in terms
of how well it coordinates agent interactions or how
efficient it is in using agent resources and abilities to
settle issues. Higher quality can correspond to near-
optimal coordination, while lower quality might cor-
respond to merely achieving a satisfactory level of
coordination. In some cases, simply avoiding dis-

Distributivity
increases

uncertainty about
which agents are

currently sharing the
task environment

and what each
agent is or should

be doing.

agreement or conflict is good enough. A coordination
strategy for an automobile intersection, for example,
could specify requirements ranging from simple crash
prevention to ensuring that drivers’ wait times do not
exceed a certain upper limit. Increasing demands puts
greater stress on the coordination strategy.

Robustness. Uncertainty or other task environment
dynamics can affect a solution’s robustness. For exam-
ple, if a coordination strategy cannot keep up with a
particularly dynamic task environment, it can become

outdated. The coordination strategy should anticipate,
either implicitly or explicitly, the range of conditions
under which the solution it provides will be followed.
In a task environment in which a minor deviation from
expectations can lead to severe consequences, finding
assured robust solutions can be imperative.

Overhead limitations. The coordination strategy’s
costs could include computation requirements, com-
munication overhead, time spent, and so on. If, for
example, communication is costly and time consum-

July 2001 41

In their simplest forms, transport prob-
lems involve agents moving one or more
entities from one location to another along
connecting paths. Examples include mes-
sage routing, cargo delivery, and evacua-
tion tasks. Describing and visualizing
transport problems, which are commonly
used in agent coordination research, is
straightforward. However, these problems
can be sufficiently complex to make coor-
dination difficult.1

When transport agents can make deci-
sions independently, scaling up to large
numbers is easy; challenges lie in other
dimensions of stress. In the evacuation
task shown in Figure A, for example, lim-
iting a transport’s capacity or prohibiting
more than one transport from being in a
location or traversing a path at one time
can increase the degree of interaction.
Imposing more stringent efficiency
demands—for example, not just getting
evacuees to safety but getting them there
as quickly as possible or with minimal
movement—likewise increases stress.

Other dimensions complicating coor-
dination in transport problems include

• distributivity—only agents near
evacuees, rather than a central dis-
patcher, know about particular
transport tasks;

• dynamics—new evacuees randomly
appear over time, or locations and
connections appear and disappear
unpredictably; and

• heterogeneity—only some transports
can move particular evacuees.

If minimizing bandwidth is a solution
requirement, avoiding duplicate efforts or
cooperatively helping others find safe

locations is harder and could involve such
insect-inspired techniques2 as marking
paths to either repulse transports from
already visited locations or attract others
to safe locations.

References
1. K. Fischer, J.P. Muller, and M. Pischel,

“AgenDA—A General Testbed for Distri-

buted Artificial Intelligence Applications,”
Foundations of Distributed Artificial In-
telligence, G.M.P. O’Hare and N.R. Jen-
nings, eds., John Wiley & Sons, New York,
1996, Chapter 15.

2. V. Parunak, “‘Go to the Ant’: Engineer-
ing Principles from Natural Agent Sys-
tems,” Annals Operations Research, vol.
75, 1997, pp. 69-101.

Transport Problems

Figure A. Simulation of an evacuation task. Locations (large circles) are connected in
a grid as well as by random diagonal links. Transports (large colored circles) move
among locations, pick up evacuees (small colored dots), and move them to safe
(green) locations.

42 Computer

ing, a coordination strategy might need to
reduce its demands for information exchange
among agents; beyond some point, it will have
to make high-quality coordination decisions
lacking information it would otherwise expect
to have. Questions can therefore arise about
whether a coordination strategy can scale well
to environments that impose more stringent
limits on the costs the strategy incurs.

Combining dimensions
Scaling along combinations of these various

dimensions obviously poses even greater chal-
lenges. Handling complex agents is much
harder, for example, if they are complex in het-
erogeneous ways. The inherent delays associ-
ated with propagating changes in a high-
distributivity setting likewise compound the dif-

ficulties that arise in a dynamic task environment.
Coordination strategies therefore tend to make

assumptions about which dimensions a given appli-
cation domain is likely to stress. A strategy for han-
dling complex, heterogeneous agents might require
limiting the number of agents. Lowering agent inter-
action can simplify distributivity in a dynamic task
environment by localizing the need to propagate
awareness. As long as minimizing costs and delays is
not a major objective, continually monitoring and
updating a coordination solution can improve robust-
ness without sacrificing quality.

CHARACTERIZING COORDINATION STRATEGIES
Considering qualitative “low” and “high” values

for the three dimensions of the three major types of
properties—population, task environment, and solu-
tion—that could be scaled to make coordination
harder would result in 512 combinations requiring a
variety of coordination strategies. For purposes of this
discussion, however, the following examples provide
just a selection of coordination strategies and the kinds
of scaling for which they are particularly well suited.

More agents
To some, scaling up means being able to handle

more agents, and handling more agents is usually
harder than handling fewer. Trying to get a large pop-
ulation of complicated, self-interested, interacting
agents to behave efficiently and robustly in a dynamic
environment is a difficult task. Usually, something
must give: Coordination strategies that scale well to
numerous agents tend to deal poorly with other con-
founding dimensions.

For example, cellular automata often deal with large
numbers of entities that typically use rules to react to
their local environment—such as deactivating when
too few neighbors are active or activating when enough

neighbors are active. These simple local changes can
cause activity patterns to emerge in the population.
Physics-based models of large computational agent
ecosystems can even lead to designs of metamorphic
robots made up of many small pieces that shift and
flow to adapt to the environment.3 Similarly, systems
based on insect metaphors assume that each agent is a
relatively simple automaton and that local interactions
cause emergent properties to arise.4

These strategies assume little complexity or hetero-
geneity in the agent population, focus on limited inter-
actions, and are often satisfied with statistical system
performance rather than being concerned about using
each agent efficiently or making optimal choices.

Successfully scaling up to numerous agents gener-
ally requires that each agent only needs to interact
with a predetermined number of other agents based
on features such as their physical locations or their
tasks. Thus, many mobile agents can be dispersed to
perform information-gathering tasks independently,
interacting only indirectly to contend for bandwidth
or server cycles.5 Similarly, large-scale coalition for-
mation can be an emergent process involving incre-
mentally growing groups of agents that encounter one
another and discover advantages of banding together.

More heterogeneity
Heterogeneity can help in scaling up large agent

populations if disparate agents do not need to interact.
However, heterogeneity typically is desirable in a sys-
tem because it increases the systemwide capabilities,
allowing agents with complementary attributes to
combine their efforts to achieve objectives beyond
what they can achieve individually. Once the agent
population is no longer homogeneous, the agents must
be able to understand and describe what they can do
and find other agents with which to work.6 To scale
along the heterogeneity dimension, coordination
strategies need to support the ability of agents to
describe themselves and to find one another, such as
hardwiring implicit acquaintanceships among agents.

The contract net protocol2 and its descendants have
been a mainstay coordination strategy for handling
heterogeneity. In this protocol, agents dynamically
assign tasks to other available agents that are capable
of doing the tasks. In its simplest form, an agent
broadcasts an announcement of the task along with
criteria the other agents can use to decide whether they
are eligible to take on the task and, if so, what infor-
mation to supply in making a bid for the task. The
agent with the task can choose from among the
responses to make an assignment.

The contract net protocol scales well to an open sys-
tem of heterogeneous agents, but the broadcast com-
munication requirements can become problematic as
the number of agents increases. One solution is to

Heterogeneity
is desirable because

it increases the
systemwide
capabilities,

allowing agents with
complementary

attributes to
combine their

efforts to achieve
objectives.

maintain a more centralized registry of agents and
their capabilities to use in discovering promising
matches. Strategies that support agent registration and
matchmaking,7 such as Sun Microsystems’ Jini net-
working technology (http://www.sun.com/jini), allow
agents to find one another by describing the services
they need or provide.

More generally, formalisms for communicative acts,
such as the Foundation for Intelligent Physical Agents
(http://www.fipa.org), permit a broad array of con-
versation policies in support of flexible agent interac-
tions among heterogeneous agents. Many of these
concepts are converging in comprehensive frame-
works that support heterogeneous agent-based sys-
tems, such as the Defense Advanced Research Projects
Agency’s Control of Agent-Based Systems (CoABS)
Grid (http://coabs.globalinfotek.com).

More complexity
Heterogeneity emphasizes the challenges that accrue

when specialist agents need to identify one another
and team to provide broader services. Additional com-
plications arise when agents are individually more
complex, which typically means that each agent is
more versatile. Each agent must then decide which of
the many possible roles it should play, and it must con-
sider the potential alternative activities of other agents.

Scaling up to more complex agents means that
teaming involves not only finding an available agent
with appropriate capabilities, but also selecting the
agent whose other talents are least in demand by other
teams. Instead of localized agent interactions within
smaller teams, their partial substitutability for one
another leads to complex chains of agent dependen-
cies: How some teams are formed can affect other
teams’ desirability. Agents therefore must be increas-
ingly aware of the agent network’s broader needs.

Even when agents do not need to team up but
merely must coexist and stay out of each other’s way,
each agent’s increased versatility makes anticipating
what others will do much more difficult. Strategies for
increasing awareness about other agents’ planned
activities is paramount because being prepared for
anything that another agent could choose to do might
be impossible. These strategies can include statistical
learning, observing agents to infer their current plans,
or communicating information agents can use to
model one another’s intentions.

For example, in a distributed constraint satisfaction
process, agents can converge on mutually compatible
plans to accomplish their objectives in several ways. In
this process, tentative plan choices are propagated
among agents; when inconsistencies are detected
among the choices of a subset of agents, some of the
agents perform systematic backtracking. Strategies for
making this process more efficient include parallel

asynchronous exploration and dynamically re-
ordering which agents should try other alter-
natives by identifying the constraints that are
the most difficult to satisfy.2

Higher degree of interaction
As the number and complexity of agent inter-

actions grow, coordination becomes in-
tractable. Reducing or eliminating interactions
is an effective means of addressing coordination.
When agents are only concerned about interac-
tions with a small number of local neighbors,
scaling to large numbers of agents is easier. Thus,
localizing interactions can obviate the need for
more complicated coordination strategies.

One often-used technique for controlling the
degree of interaction is to impose a relatively
static organizational structure on agents. In this struc-
ture, each agent has a role to play in the organization,
including its own sphere of control and knowledge of
agents playing related roles. Giving each agent the
resources it requires to fulfill its role eliminates the
need for resource negotiation, and providing knowl-
edge of other agents’ roles identifies the agents that
need to communicate and about what. Such a struc-
ture simplifies coordination and allows larger, more
complex agent systems to succeed in more demanding
task domains. The challenge, of course, is designing
organizations that match the agent population and
the task environment’s needs.8

Some multiagent tasks require tight interactions
among agents. Examples include combat flight oper-
ations9 and pursuit tasks in which predators need to
surround a prey. As the “Pursuit Problems” sidebar
describes, interactions are not a side effect of such
applications but rather their specific purpose.
Therefore, an emphasis on agent teams is appropri-
ate, leading to frameworks in which system designers
explicitly describe team behavior, with particular
attention to which team members should interact,
when, and how.9,10

When agents must formulate compatible plans but
no previous examples are available, they need tech-
niques for reasoning about how agent actions can
facilitate, hinder, or even disable others’ actions.
Merging individually formulated plans that permit
agents to successfully accomplish their activities with-
out interfering with one another can be a useful tech-
nique.11,12

More dynamic interaction
Whether viewed as a population of individuals or

as a team, a multiagent system that operates in a
dynamic task environment must contend with changes
in plans, goals, and conditions. Tasks that agents could
previously carry out independently might now require

July 2001 43

Teaming involves
finding an

available agent
with appropriate
capabilities and

selecting the agent
whose other talents

are least
in demand by
other teams.

44 Computer

interaction—for example, when a resource becomes
unusable, leading to contention for remaining
resources. Existing agreements might be subject to
review as some team members change their priorities
or recognize that their individual intentions, or those
of the team, are no longer relevant in the new context.

Various conventions can specify what agents should
do when they begin to question their commitments
because of task-environment dynamics.13 One such
convention seeks to ignore dynamics entirely by insist-
ing that agents must fulfill their commitments regard-
less of changing circumstances. Other alternatives
include allowing agents to renege on commitments if
they pay a penalty or allowing agents to abandon
obsolete commitments if they notify team members,
thus potentially stimulating the formation of differ-
ent commitments.

In fact, dynamic task environments can suggest that
agents should never view plans as being anything
more than tentative. Agents could unilaterally change
their plans and begin acting on new plans before
reaching agreement across the team. This approach
has the potential for leading to inefficient collective
activities because of information delays, causing chain
reactions and even race conditions among changes.
However, under some limiting assumptions about
how and when agents can make unilateral changes,
iterative coordination and execution techniques can

lead to flexible coordinated behavior in dynamic task
environments.2

More distributed interaction
Even when agent interactions are few and not under-

going dynamic changes, a task environment can stress
agents if interactions requiring coordination are hard
to anticipate. If agents are acting based on privately
held information about goals and methods, identify-
ing which agents might interact is particularly difficult.

One response is to anticipate all potential actions
agents might take and impose restrictions that prohibit
undesirable interactions. Such “social laws” ensure
that law-abiding agents need not worry about unde-
sirable interactions, no matter what goals and plans
they adopt.14 In human terms, as long as all drivers
obey traffic laws, for example, they should be able to
eventually reach their destinations without colliding.

Another option is to help potentially interacting
agents efficiently find one another. Auctions, for exam-
ple, bring together related buyers and sellers.2 Creating
agents that represent resources over which agents
might contend helps identify resource demands.
Interaction helps agents discover other agents with
which they can form persistent aggregations.

Without an identifiable context for aggregation,
however, agents must somehow test for possible inter-
actions against all other agents. To accomplish this, a

In contrast to transport problems, in
which agents may be able to separately
accomplish different goals, pursuit prob-
lems require two or more agents to coop-
erate to achieve a shared goal—for exam-
ple, predators surrounding and capturing
one or more prey.1 As Figure B shows,
pursuit tasks are usually simulated on a
two-dimensional grid, and each agent can
only move to a vacant contiguous square.
Because many real-life problems require
agent cooperation, researchers have
stressed the pursuit task along various
dimensions to discover different coordi-
nation strategies’ limitations.

Expecting more from a solution while
limiting the resources available is one obvi-
ous way to make pursuit harder—for
example, requiring that predators catch the
prey every time, as quickly as possible, or
with little or no communication. Limiting
each predator’s perceptual range to prevent
it from locating the other agents, possibly
including the prey—a form of inherent dis-

tributivity—can likewise be problematic.
Increasing the numbers of predators and
prey makes it more difficult to determine
which combination of predators should
pursue which prey. If predators and prey
can appear and disappear unexpectedly,
the challenge is to fashion a robust strat-
egy responsive to such changes.

An extreme case of the problem involves
mutual pursuit, in which members of one
predator group try to surround another
group’s member who, with its mates’ help,
tries to turn the tables on its would-be cap-
tors. The uncertainty of an agent as to
whether it is predator or prey at any given
time stresses the complexity dimension.

Reference
1. L. Gasser et al., “Representing and Using

Organizational Knowledge in Distributed
AI Systems,” Distributed Artificial Intel-
ligence Vol. 2, M.N. Kuhns and L. Gasser,
eds., Pitman, London, 1989, pp. 55-78.

Figure B. Simulation of a pursuit task. Preda-
tors (circles) that individually attempt to cap-
ture a prey (triangle) can easily fail. If each
predator simply attacks the side of the prey
closest to it, one or more other sides may
remain open. Unless they surround the prey
before closing in, predators that get next to
the prey first can chase it to a side or corner
of the grid, resulting in a stalemate.

Pursuit Problems

coordinator could collect summary information on all
relevant agents and use its global awareness to inform
agents about potential interactions.12 Alternatively,
each agent could broadcast information to all other
agents so they all have sufficient awareness of the
global picture. These iterative exchanges help the over-
all system cooperatively achieve its objectives.

Nearer to optimality
Optimal coordination is generally desirable but

rarely feasible because it generally requires substan-
tial computation and communication overhead. In a
dynamic task environment or an environment with
many agents or complex interactions, a locally optimal
solution is often acceptable. Often, simply finding a
coordinated solution that does well enough—one that
avoids conflicts among agents or ensures eventually
achieving goals—is enough.

In market-based methods for finding an optimal
solution, agents maximize resource allocation effi-
ciency by using iterated auction bidding rounds to bal-
ance supply and demand.2 Active research is extending
these coordination strategies to scale them along other
dimensions so they can handle larger numbers of
agents as well as agents with higher degrees of inter-
action and greater dynamics.15 Distributed, rational
decision-making methods2 based on multiagent exten-
sions of Markov decision processes16 can find an opti-
mal policy based on a particular coordination protocol
employed at runtime—for example, to increase agents’
awareness of the global situation.

More robustness
An optimal solution can break down when the

world deviates from the coordination strategy’s under-
lying assumptions. Whether a coordination strategy
can scale to domains where robust performance is dif-
ficult but necessary can thus become important.

Building a solution that gives agents sufficient flex-
ibility to work around new circumstances within their
original coordination agreement can increase robust-
ness. For example, building slack time into scheduled
activities or not committing to details can leave agents
with more maneuvering room when things do not go
according to plan. Typically, more robust coordina-
tion decisions are less efficient because they reserve
resources and options for fallback contingencies, sub-
optimally assigning tasks among agents, a feature typ-
ical of stable organizations.2,8

Alternatively, a coordination strategy could monitor
its solution’s execution and make repairs as needed. An
example of this approach is a teamwork model that
includes a convention for responding when continued
pursuit of a joint commitment is senseless.17 In some
cases, developing generic monitoring and recovery meth-
ods for the coordination processes might be possible.18

Lower overheads
Reducing coordination strategy overhead is

important in application domains with limited
communication channels and minimal compu-
tational resources. As bandwidth becomes more
limited, for example, agents must make coor-
dination decisions without exchanging enough
information to maintain an expected level of
global awareness.

Time-constrained coordination solutions
involving the iterative exchange of increas-
ingly detailed information about agents’ plans
and intentions can limit communication and
computation overhead at the expense of quality.12

Alternatively, agents can avoid a coordination chain
reaction by tolerating outdated decisions. When
communication is at a premium or even impossi-
ble, using observations to model others or reason-
ing to converge on decisions is another alternative.

Sometimes coordination resources are sporadically
available. In some coordination scenarios, agents can
use plentiful resources to build more complete models
of their roles and contingent plans, which they can
exploit when they move into situations in which fur-
ther communication and computation are unsafe or
infeasible.19,20

A variety of promising ideas exist for designing
computationally realizable agent coordination
strategies that work well under a broad range

of circumstances. Most coordination strategies can
scale along multiple dimensions, but each has its
limits. Researchers face the challenge of developing
a better—preferably quantifiable—understanding
of exactly how far different coordination strategies
can scale along the dimensions required to apply
intelligent agent systems to increasingly challenging
problems. ✸

Acknowledgments
Many ideas in this article arose through interactions

with researchers in the CoABS project, including Craig
Boutilier, Jim Hendler, Mike Huhns, David Kotz,
James Lawton, Onn Shehory, Katia Sycara, Milind
Tambe, and Sankar Virdhagriswaran. Milind Tambe
provided valuable feedback on an early draft.
DARPA, in part, supported this work through Rome
Labs (F30602-98-2-0142).

References
1. N.R. Jennings, “An Agent-Based Approach for Build-

ing Complex Software Systems,” Comm. ACM, Apr.
2001, pp. 35-41.

2. G. Weiss, ed., Multiagent Systems: A Modern Approach

July 2001 45

To maximize
resource allocation
efficiency, agents
can use iterated
auction bidding

rounds to balance
supply and demand.

46 Computer

to Distributed Artificial Intelligence, MIT Press, Cam-
bridge, Mass., 1999.

3. H. Bojinov, A. Casal, and T. Hogg, “Multiagent Con-
trol of Self-Reconfigurable Robots,” Proc. 4th Int’l Conf.
Multiagent Systems (ICMAS 2000), IEEE CS Press, Los
Alamitos, Calif., July 2000, pp. 143-150.

4. J. Ferber, Multiagent Systems: An Introduction to Dis-
tributed Artificial Intelligence, Addison-Wesley, Harlow,
UK, 1999.

5. R.S. Gray et al., “Mobile-Agent versus Client/Server Per-
formance: Scalability in an Information-Retrieval Task,”
tech. report TR2001-386, Dept. of Computer Science,
Dartmouth College, Hanover, N.H., Jan. 2001.

6. T. Berners-Lee, J. Hendler, and O. Lassila, “The Seman-
tic Web,” Scientific American, May 2001, pp. 34-43.

7. K. Decker, K. Sycara, and M. Williamson, “Middle-
Agents for the Internet,” Proc. 15th Int’l Joint Conf.
Artificial Intelligence (IJCAI 97), Morgan Kaufmann,
San Francisco, 1997, pp. 578-583.

8. M.J. Prietula, K.M. Carley, and L. Gasser, eds., Simu-
lating Organizations: Computational Models of Insti-
tutions and Groups, AAAI Press/MIT Press, Menlo Park,
Calif., 1998.

9. M. Tambe and W. Zhang, “Towards Flexible Teamwork
in Persistent Teams: Extended Report,” J. Autonomous

Agent Multiagent Systems, June 2000, pp. 159-183.
10. B.J. Grosz and S. Kraus, “Collaborative Plans for Com-

plex Group Action,” Artificial Intelligence, vol. 86, no.
2, 1996, pp. 269-357.

11. E. Ephrati, M.E. Pollack, and J.S. Rosenschein, “A
Tractable Heuristic That Maximizes Global Utility
through Local Plan Combination,” Proc. 1st Int’l Conf.
Multiagent Systems (ICMAS 95), IEEE CS Press, Los
Alamitos, Calif., 1995, pp. 94-101.

12. B.J. Clement and E.H. Durfee, “Top-Down Search for
Coordinating the Hierarchical Plans of Multiple
Agents,” Proc. 3rd Int’l Conf. Autonomous Agents,
ACM Press, New York, May 1999, pp. 252-259.

13. N.R. Jennings, “Commitments and Conventions: The
Foundation of Coordination in Multiagent Systems,”
Knowledge Eng. Rev., vol. 2, no. 3, 1993, pp. 223-250.

14. Y. Shoham and M. Tennenholtz, “On Social Laws for
Artificial Agent Societies: Off-line Design,” Artificial
Intelligence, vol. 72, no. 1-2, 1994, pp. 231-252.

15. Y. Fujishima, K. Leyton-Brown, and Y. Shoham, “Tam-
ing the Computational Complexity of Combinatorial
Auctions: Optimal and Approximate Approaches,” 16th
Int’l Joint Conf. Artificial Intelligence (IJCAI 99), Mor-
gan Kaufmann, San Francisco, 1999, pp. 548-553.

16. C. Boutilier, “Multiagent Systems: Challenges and
Opportunities for Decision-Theoretic Planning,” AI
Magazine, Winter 1999, pp. 35-43.

17. S. Kumar, P.R. Cohen, and H.J. Levesque, “The Adap-
tive Agent Architecture: Achieving Fault-Tolerance Using
Persistent Broker Teams,” Proc. 4th Int’l Conf. Multia-
gent Systems (ICMAS 2000), IEEE CS Press, Los
Alamitos, Calif., 2000, pp. 159-166.

18. C. Dellarocas and M. Klein, “An Experimental Evalua-
tion of Domain-Independent Fault Handling Services in
Open Multiagent Systems,” Proc. 4th Int’l Conf. Mul-
tiagent Systems (ICMAS 2000), IEEE CS Press, Los
Alamitos, Calif., 2000, pp. 39-46.

19. E.H. Durfee, “Distributed Continual Planning for
Unmanned Ground Vehicle Teams,” AI Magazine, Win-
ter 1999, pp. 55-61.

20. P. Stone and M. Veloso, “Task Decomposition, Dynamic
Role Assignment, and Low-Bandwidth Communication
for Real-Time Strategic Teamwork,” Artificial Intelli-
gence, vol. 110, no. 2, 1999, pp. 241-273.

Edmund H. Durfee is a professor of computer science
and engineering at the University of Michigan, Ann
Arbor. His research interests include multiagent sys-
tems, real-time intelligent control, and cooperative
problem solving for applications ranging from inter-
acting unmanned air and ground vehicles to support-
ing human collaboration. Durfee received a PhD in
computer science from the University of Massachu-
setts. He is member of the ACM and the AAAI and a
senior member of the IEEE. Contact him at durfee@
umich.edu.

Investing in Students

computer.org/students/

Lance Stafford Larson Student Scholarship
best paper contest

✶
Upsilon Pi Epsilon/IEEE Computer Society Award

for Academic Excellence

Each carries a $500 cash award.

Application deadline: 31 October

SCHOLARSHIP
MONEY FOR
STUDENT
MEMBERS

