Congregating and Market Formation

Christopher H. Brooks and Edmund H. Durfee
Artificial Intelligence Laboratory
University of Michigan
Ann Arbor, MI 48104
{chbrooks, durfee}@umich.edu

Abstract

Agents in a multiagent system are not typically en-
tirely self-sufficient; instead, they frequently need to
enlist other agents to perform tasks for them or to
exchange goods or services with them. This creates
a problem: how can an agent efficiently locate other
agents to work or trade with? As the number of agents
grows, the cost of this computation can become pro-
hibitively large. One solution to this is for the system
to self-organize into smaller groups of agents. In this
paper, we apply the idea of congregating to a model
of an information economy. We illustrate how partic-
ipants in this economy can self-organize into a set of
markets such that agents are able to find suitable part-
ners while retaining low computational costs. We show
how congregating can help allocation problems scale to
large populations by allowing agents to interact locally.

Introduction

In a dynamic, open multiagent system, agents have to
continually make and re-evaluate their decisions as to
which other agents they should interact with. These
interactions might include the buying and selling of
goods, negotiation over a set of tasks to perform, or
cooperation to achieve a joint goal. A great deal
of research in both game theory and artificial intel-
ligence, cooperative game theory (Mas-Colell, Whin-
ston, & Green 1995) and coalition formation (Shehory
& Kraus 1998), auction theory (Wellman et al. 2001),
and team formation (Tambe 1997) has focused on how a
group of agents can make these sorts of decisions. Two
problems typically arise in these sorts of approaches:
scaling to domains with large numbers of agents, and
dealing with the fact that the composition of the agent
population is not typically known to any single agent.

Our research addresses the problem of how a large
population of agents can, in a self-organizing fashion,
separate itself into subgroups known as congregations.
Ideally, each congregation should contain a collection of
agents who would like to interact with each other. Once
these groups exist, standard allocation algorithms such
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as auctions or coalitions can be used within each congre-
gation to decide which agents should perform particular
tasks or exchange goods.

Congregations are a useful self-organizing mechanism
for several reasons. First, they allow the system to
scale: once an agent has joined a congregation, deci-
sions as to whom it should interact with can (at least
initially) consider only the other members of its con-
gregation. As long as the congregation size remains
relatively constant, the population can grow without
impacting an agent’s decision process. Second, it pro-
vides the system with a type of institutional memory.
The congregation can be considered as an entity unto
itself, much in the way that we can talk about an anthill
or a football team both in terms of its members and as
a single object. The exact population of a congregation
may change as particular agents leave or arrive, and yet
the group as a whole is able to maintain a long-term
existence. Third, it can serve as a way of coordinating
agents’ decisions as to which group(s) to join. By de-
scribing a congregation in a meaningful way, a system
designer can hope to attract agents of particular types
or interests.

Congregating can be seen as a form of ’cooperative’
learning, or group-level learning, even though the par-
ticipants are all completely self-interested. The popula-
tion as a whole is trying to learn how to organize itself.
In most multiagent systems, the agents are playing a
general-sum game, in which there are particular config-
urations of congregations that will lead to higher utility
for a large fraction of the agent population. Therefore,
discovery of these congregations can be viewed as an
adaptive distributed search through the space of all pos-
sible congregations, in which each agent has a partial
influence on the exploration process.

In the rest of this paper, we will discuss the role of
congregations in an information economy, define more
precisely what we mean by a congregation and describe
it in terms of a simple model of an information economy.
We will then show experimental results that suggest
that congregations can improve the overall utility of
the agents in a multiagent system. We will conclude
with future directions for studying the formation and
dynamics of congregations.



Congregating in Information
Economies

Our past research (e.g. (Brooks et al. 1999; Brooks,
Durfee, & Das 2000)) has focused on how producers in
an information economy can locate consumer niches and
efficiently learn the preferences of consumers in these
niches. It is this first problem, that of locating a niche,
that is most relevant to congregating. In this problem,
two or more producers are each separately selecting a
set of goods to sell and a pricing mechanism for these
goods. In doing this, they separate the consumer pop-
ulation into one or more markets, each of which buys
from one producer, plus the market consisting of con-
sumers who choose not to buy from any producer. Each
producer’s problem is then to find a profitable location
in price/product space, subject to the decisions of the
other producers.

In this paper, we take the problem of market forma-
tion one step further, and draw directly on the congre-
gating metaphor to examine the process of market for-
mation in a multiagent system containing a large num-
ber of producers and consumers. Elsewhere (Brooks &
Durfee 2002), we present a general model of congrega-
tions, focusing on the affinity group domain. This work
showed how congregating can be difficult when the so-
lution space is very sparse, and suggested the introduc-
tion of labelers as a signaling mechanism that served to
coordinate agents’ decisions. It also showed how con-
gregating could be used to improve average payoff when
agents with heterogeneous preferences played a coordi-
nation game. Our current paper applies congregating to
information economies. We show how congregating can
be used to stimulate producers and consumers in an in-
formation economy to self-select into separate markets
so that the average profit in the system is increased.
The effectiveness of this approach depends upon the
number of markets available, as well as the specificity
of agent preferences.

In many large-scale economies, the problem of who to
buy or sell from is a significant one. Mechanisms such
as auctions which pair buyers and sellers can be used to
do this when the number of agents is relatively small,
but if the population is large or the auction is combi-
natorial, both the allocation of goods and the selection
of bids becomes a difficult computational problem. A
solution to this is to construct several smaller auctions,
each of which contains buyers and sellers with ‘similar’
interests.

One inspiration for this approach was the Univer-
sity of Michigan Digital Library (UMDL) (Durfee et al.
1998), which was a market in which automated agents
would buy and sell information goods. The UMDL
contained consumers with many different interests, and
providers offering a wide set of different types of arti-
cles. Each consumer had a User Interface Agent (UIA)
that located sellers of relevant information goods. The
sellers were also represented by agents, known as Col-
lection Interface Agents (CTA). These agents interacted

through auctions, each of which was described using an
ontology which indicated the goods being bought and
sold. These auctions were instantiated via the Auction
Manager Agent (AMA), which would dynamically cre-
ate new auctions when it noticed unsatisfied consumer
demand and delete auctions when they experienced a
lack of activity. This was a centralized process which
allowed for the partitioning of the market space into
separate congregations, making the location of poten-
tial customers or goods a manageable process for the
agents involved, as well as the human users.

In our exploration of congregating and market for-
mation, one goal is to reproduce this process without
the intermediation of a centralized market maker (the
AMA). Instead, we propose that this functionality can
be handled by a distributed set of market makers, each
of which has the goal of attracting buyers and sellers
such that its market is successful (measured in terms
of either number of trades or surplus generated). In
essence, we would like for the formation of multiple
markets, each of which is composed of buyers and sell-
ers with complementary interests, to be an emergent
phenomenon. The purpose of this work is to identify
whether congregating can in fact be a viable strategy
for a large group of self-interested agents.

Congregations

In this section, we define more precisely what we mean
by a congregation, both generally and in terms of our
information economy model. A more detailed presenta-
tion of this model (with minor differences) can be found
in (Brooks & Durfee 2002).

We begin by considering a general model of a mul-
tiagent system. Let A = {ay,as,...,a,} be a set of
agents in the system at time ¢. (For ease of presen-
tation, we will assume discrete time. However, noth-
ing in our model requires it.) The essential criterion
for congregating to be an interesting problem is that
each agent needs to interact with some other subset of
the agents in the population. In utility-theoretic terms,
each agent a has a utility function U, : P(4A) —» R.
(P(A) is the power set of all agents.) This function in-
dicates the utility that agent a receives from interacting
with a particular set of other agents.

It is assumed that an agent cannot interact with every
other agent, due to computational and communication
constraints. (Recall that n is large.) Therefore, at every
time ¢ an agent will need to choose a subset of agents
to interact with.

Congregations are a way of simplifying this decision
problem; rather than choosing agents from the entire
population of size n, an agent can join a congregation
of size ¢ << n. This allows the agent to reduce the size
of its search problem by considering the ¢ agents in its
congregation to interact with. Additionally, in domains
in which agents have symmetric interests (meaning that
if agent a wants to interact with agent b, then b wants to
interact with a), forming congregations will improve an



agent’s chances of a 'successful’ interaction by allowing
agents to group together with other like-minded types.

Most generally, a congregation ¢ is simply a tuple
<1, At >, where A, is a set of agents {a;, ...,a;} who
have all collocated at a ‘location’ [ at time ¢. (This
need not be a physical location; it could be a particular
multicast address, radio frequency, or mailing list. The
point is that they communicate only with other agents
in the congregation.) We assume for simplicity that an
agent is only a member of one congregation at a time;
future work will relax this assumption. A congregation
is defined intrinsically by its membership. It may be
useful for the members of a congregation or for other
agents, such as market makers, to try to describe a con-
gregation extrinsically by characterizing some quality
shared by its members, but this is just a label.

Let us make this all more concrete by placing it in
terms of an information economy. Our set A of agents
consists of two disjoint subsets: a set B of buyers and a
set S of sellers.! Our commodity is information goods:
an information good is an article of a particular cat-
egory ¢ € {c1,...,c;}. Examples of categories include
Sports, Arts, International News, and so on. At each
time ¢, a seller is able to select a type of good to of-
fer. Each buyer has a category ¢* of good that it most
prefers; articles in this category have a reservation value
r. A good from another category ¢’ is valued at:

|e* — ¢

) M

Note that this assumes that categories are arranged ac-
cording to a ’similarity’ metric on the k axis. While
this is a simplification, it is sufficient for our needs. It
also provides our model with some similarities to the
Hotelling model, which is a common economic frame-
work for product differentiation. Hotelling models typ-
ically contain one or more product dimensions along
which producers can differentiate themselves, and con-
sumers with heterogeneous preferences along these di-
mensions. Each producer must determine where to lo-
cate, given the expected locations of the other produc-
ers. Anderson, et al. (Anderson, de Palma, & Thisse
1992) provide a thorough overview of Hotelling-style
models.

In our model, each agent a has a threshold 7, which
indicates the fraction of r it wants to receive from a
transaction. This threshold can be interpreted either as
a production or consumption cost, or as a form of satis-
ficing, whereby all transactions yielding utility greater
than 7, x r are considered satisfactory by agent a.

In a simple world, this would be all that is needed
for a model; buyers and sellers could be paired up us-
ing some sort of predetermined mechanism, either a de-
centralized mechanism such as Contract Net (Davis &
Smith 1983), in which agents broadcast offers to each

i
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!We assume that there is no resale; buyers consume their
goods immediately. Economies containing supply chains are
also a promising area of application for congregations, but
are not treated here.

other, or a more centralized mechanism such as an auc-
tion, where bids are submitted to a central authority
which computes allocations. In either case, there is
some computation that must be performed in order to
determine an allocation. In the case of Contract Net,
this computation is the exchange of messages, and in
the case of an auction, it is the winner determination
algorithm. In either case, this computation does not
come for free; we assume that the agents in the sys-
tem must pay for it. By separating into separate con-
gregations, they can ease their computational burden,
hopefully without a large decrease in the efficiency of
the allocation of goods. In fact, the goal of the exper-
iments in this paper is to determine how much gross
efficiency is lost, how much computation is saved, and
the resulting net costs as the number of congregations
is varied.

In order to capture this notion of agents separat-
ing into subgroups, our model also consists of a set
M = {mi,...,mq} of markets. These are the loca-
tions described above; buyers and sellers will congre-
gate here. Each buyers and seller will choose exactly
one market from M to join. At a time ¢, the mar-
ket will close and an allocation will be computed for all
agents in the market. The cost of this allocation will be
shared equally amongst all agents in the market. The
mechanism we use is a standard Nth-price Vickrey auc-
tion. This was chosen for simplicity; since all goods are
privately valued and there is no resale, the dominant
strategy is for agents to bid their actual valuations for
articles (MacKie-Mason & Varian 1994). However, any
allocation mechanism can be used in this model. If costs
are superlinear in the number of agents, the same qual-
itative effects will be seen. Each buyer bids its reser-
vation value and the prices and allocation of goods is
computed. Each agent can then decide whether to re-
main in this congregation or leave for another; this de-
cision will be based on whether the value received (less
computation cost) exceeds the agent’s threshold.

Clearly, in a single market, the allocation which max-
imizes efficiency can be computed. This will be used as
a benchmark in our experiments. However, comput-
ing the optimal allocation in a combinatorial auction is
NP-complete (Sandholm 2001), which means that the
computational costs will be prohibitively large as the
number of agents in a market becomes large. Even in
simpler allocation problems, such as coalition forma-
tion, the number of messages exchanged is polynomial
in the number of agents in the system, which leads to
scalability problems as the number of agents becomes
large.

Elsewhere (Brooks & Durfee 2002), we have analyzed
the convergence properties for a simple congregating
model, focusing on the length of time needed for the op-
timal set of congregations to form. That work showed
that congregating can lead to higher net utility in do-
mains where agents try to locate other agents of the
same “type”. One observation from that work is that
congregating is useful because it helps to build a “crit-



ical mass;” a group of agents will form a congregation
that is mutually beneficial, and so the congregation will
persist over time. This provides a focal point for the at-
traction of other agents that may want to be a part of
this congregation. Essentially, the congregation allows
a subset of agents to “hold still” and allow others to
find them.

In this paper, we are explicitly interested in the learn-
ing dynamics of market formation: what do the tran-
sitional congregations look like, how are agents’ aggre-
gate profits affected by the congregating process, and
whether congregating can improve overall profit by pro-
viding this sort of critical mass. Due to the complexity
of the problem and our desire to examine the transi-
tional behavior of the system, we focus on experimen-
tal methods to determine when congregating is a viable
strategy, and how overall profits (as a measure of sys-
tem performance) change as the number of markets is
altered.

Using Congregations to Improve Net
Profit

In this section, we present experiments demonstrating
the usefulness of congregating when agents must incur a
computation cost for computing an allocation of goods.
We show how congregating is a useful strategy when
agents must pay for computation, and study the effi-
ciency of the allocation (both gross, pre-computation
cost and net, post-computation) as the number of mar-
kets is varied.

In the first experiment, we consider an information
economy composed of 50 producers and 50 consumers.
There are 10 categories of information goods; at the
beginning of the experiment, each producer randomly
chooses a category of good to sell. Each consumer also
has a favorite category (drawn from a uniform distri-
bution) and preferences over non-favorite goods indi-
cated by equation 1. Reservation values for a con-
sumer’s most-preferred good are drawn from U[5, 10].
The number of markets is fixed at the beginning of the
experiment; it is assumed that all agents know m, the
number of markets, and all agents have agreed to share
equally in the costs of computation in determining an
allocation. We assume that computation has a cost of
0.1 for each message sent or comparison made. Since
we are using a generalized Vickrey auction to compute
allocations, it is straightforward for the market to hold
an auction, determine the cost of this computation, and
charge each agent accordingly.

After each market closing, every agent is able to
change markets. If the producer receives less than 7 x r
for its good, or if a consumer receives a good that it
values at less than 7 x r, it will move to a new congre-
gation chosen at random. In our initial experiments, 7
was set to 0.5 for all agents. This is varied in section .
(Note that we are not advocating random movement as
an optimal agent strategy. Instead, we are interested in
characterizing the behavior of the system as the number
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Figure 1: Cumulative profit per iteration over all sellers,
averaged across 10 runs of 1000 iterations each (x axis
is log scale)
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Figure 2: Cost of determining the optimal allocation
of goods as the number of markets increases (aver-
aged over 50 instantiations with 50 producers and con-
sumers).

of congregations is varied when agents exhibit some sort
of adaptive behavior. Random movement is meant to
provide an approximation of “typical” agent behavior
when the population is large.)

Figure 1 shows the average cumulative profit achieved
by all sellers (averaged across 1000 iterations) as the
number of markets is increased. As the number of mar-
kets is increased, initial profits are much lower, as it
becomes more difficult for each agent to locate a con-
gregation in which it can find a suitable match. Also,
the system as a whole reaches a suboptimal configu-
ration. However, this figure does not take into account
the costs of computation. Figure 2 shows how computa-
tional costs fall off quickly when the economy contains
more than one market. These two graphs are combined
in figure 3. In this figure, we can see that, even though a
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Figure 3: Net cumulative profit per iteration over all
sellers, averaged across 10 runs of 1000 iterations each.

single market is able to compute the optimal allocation,
the computational costs are high enough that produc-
ers end up with a negative net profit. As the number
of markets is increased, the computational cost falls off
much more quickly than profit, until at 25 markets the
average cumulative net profit is maximized. As more
markets are added, net profits begin to decline, as the
computational savings is outweighed by the difficulty of
finding a market containing a suitable matchup.

In figure 3, we can see the dynamics of market forma-
tion as the number of markets is increased. With a very
small number of markets (3 or 5) a stable configura-
tion is reached almost immediately. As we increase the
number of markets to 10 or 25, convergence is slightly
slower, but the configuration of congregations that is
found yields higher average profit. As the number of
markets is further increased, the quality of the config-
uration falls off slightly, and convergence time becomes
much longer. It is difficult to quantify this compari-
son directly from figure 3, due to the number of lines
and the fact that total performance is actually the area
under each curve. Figure 4 makes this tradeoff more
explicit; it shows the average net profit (over 1000 iter-
ations) as the number of markets is increased. Here we
can clearly see that net profit increases steeply as the
number of markets is increased, and then falls off after
m = 25.

We can also see that introducing too many markets,
as in the case of m = 250 or m = 500, introduces too
much inefficiency without a significant extra reduction
in computational cost. Buyers and sellers spend a great
deal of the initial iterations in a market with no suitable
agents.

In our next experiment, we examine whether the ad-
vantages of congregating scale as the number of agents
in the system is increased. We vary the number of pro-
ducers and consumers from 10 to 500 of each, in each
case setting the number of markets to half the number
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Figure 4: Average net profit (over 10 runs of 1000 it-
erations each) with 50 producers and 50 consumers as
the number of markets is varied. (x axis is log scale)
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Figure 5: Net profit per iteration per producer as the
number of producers (and consumers) is varied between
10 and 500.

of producers, and compare the net (post-computation
costs) per producer. The average profit per producer
over the course of the run is presented in figure 5.

As we can see, congregating is in fact a method that
is able to scale to large numbers of agents. Profits are
invariant as the number of agents in the system is in-
creased. (In fact, net profits for small numbers of agents
are slightly lower; this is an artifact of the way in which
agents are randomly generated. For low numbers of
agents, it is less likely, for any given producer, that there
is a consumer whose most desired good corresponds to
that produced.) As long as the system designer has a
rough idea of how many other agents are in the econ-
omy and is able to construct the appropriate number
of markets (half the number of producers in this case),
market size remains constant, the economy can scale,



Figure 6: An illustration of the changes being per-
formed on a simplified landscape. The top figure shows
a simple two-peaked profit landscape. As agents’ 7 is
increased, the “sealevel” increases, lading to the second
figure. the original landscape is indicated by a dotted
line. When consumers reduce the number of categories
they value, the result is the attenuated landscape shown
at the bottom. The heights of the peaks remain con-
stant, but the area of the plateaus increase.

and producers and consumers are still able to find each
other and make successful transactions.

Of course, these results are dependent on the par-
ticular costs and reservation values chosen. The higher
the ratio of reservation values to computation costs, the
more utility will be placed on an optimal solution. On
the other hand, as computation costs become a signif-
icant portion of net profits, agents will prefer cheaper
solutions and congregating will gain appeal.

Varying Consumer Preferences

A large part of the effectiveness of congregating comes
from its ability to serve as a coordination mechanism
for agents’ decisions. A subset of agents will move into
a particular market and, if they are happy, stay there.
This reduces the complexity of the problem for agents
who have yet to find a suitable market, since fewer
agents are moving. If we visualize the congregating pro-
cess as a search over a landscape, congregating allows
the search process to move along a gradient more effec-
tively. Of course, this assumes that the landscape has
a gradient. In this section, we alter the gradient of the
landscape and examine the effectiveness of congregat-

ing.
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Figure 7: Net profit per iteration as the threshold is
varied between 0.1 and 1, averaged over 10 experiments.
r is the agent’s reservation value. X-axis is log scale.

In our first experiment, we alter agents’ threshold
7. Recall that 7 is the fraction of reservation value an
agent must receive to be satisfied with a transaction. As
T increases, an agent is happier in fewer congregations.
In terms of the search landscape, this lowers all the
peaks equally, as if there was a flood. Fewer points on
the landscape have positive profit, but the topology is
not deformed. Figure 6 illustrates this.

Experiments were again conducted with 50 con-
sumers and 50 producers. All experiments were per-
formed with 25 markets, seen to be the optimal number
in our previous experiments. 7 was varied between 0.1
and 1.0. Results are shown in figure 7

As we see from figure 7, when 7 = 1, the process takes
longer to converge to a solution, but the quality of the
final solution is improved. When 7 is small, the process
converges more quickly, but to a local optimum. The
encouraging result here is that even when the threshold
is high, meaning that agents have a high cost of pro-
ducing or consuming articles, congregating still quickly
finds a desirable solution.

In our second experiment regarding consumer prefer-
ences, we alter the number of categories each consumer
values positively. We do this by giving each consumer
a value n which indicates the number of categories they
value positively. If an article offered by a producer is
of a category less than 3 away from the consumer’s
preferred category, it is valued according to 1. Other-
wise, it has value 0. This has the effect of attenuating
the congregating search space. The gradient around
an optimum is increased, producing steeper peaks and
larger flat areas. While the profits attained by the sys-
tem at the optima do not change, the profits for non-
optimal configurations of congregations decrease, since
consumers value fewer categories. In essence, the search
problem becomes more difficult. This is also illustrated
in figure 6.
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Figure 8: Net profit per iteration per producer as the
number of categories (out of a possible 20) valued by
each consumer is varied. Results are averaged over 10
experiments. X-axis is log scale.

Once again, experiments were performed with 50 con-
sumers, 50 producers, 25 markets and 20 potential cat-
egories. T was fixed at 0.5. Results for this experiment
are shown in figure 8.

As we can see from figure 8, as consumer preferences
become more specific, the search process becomes more
difficult; many configurations of congregations do not
contain a critical mass of agents receiving a positive
profit. In terms of the search landscape, the size of
the plateaus increases. The more interesting result is
that, even though the search process becomes more dif-
ficult, through the use of congregations, the agents in
the system are still able to self-organize into congrega-
tions which yield a large fraction of the optimal profit.
This tells us that congregating is a method which is ro-
bust to the particular shape of agent preferences; even
when consumers have very specific preferences as to the
goods they want, congregating allows producers and
consumers to locate each other.

Discussion

In this paper, we have provided an example of how con-
gregating can be applied to information economies and
used to model the process of market formation. As we
have seen, if the participants in a market must pay for
their computation, they are often happier to realize an
allocation which yields slightly less utility, but can be
found at a much lower computational cost. The mecha-
nism is essentially a self-organizing one; initially, agents
which are happy in a market will stay there, providing a
fixed location that other ‘like-minded’ agents can find.
The only common knowledge that is required is that
the agents all agree on the existence of a set of markets
at the beginning of the economy’s lifetime. Once this
initial commitment is made, an agent need not consider
the global state or worry about the identity of all the

other agents in the system; it can simply concern itself
with the other agents in its congregation.

We have also shown that congregating is a technique
which allows multiagent systems to scale up to large
numbers of agents. When agents must consider the
costs of computation in determining who to purchase
from or how to allocate goods, congregating allows the
system to scale so that net profit remains relatively con-
stant as the system grows.

Additionally, we have shown that congregating is rel-
atively robust to the shape of agent preferences. Even
when consumers have a very high processing cost, or
very narrow preferences, congregating still allows pro-
ducers and consumers to make satisfactory exchanges,
although the time needed to discover the optimal con-
figuration of congregations increases.

One question that must be asked is the applicability
of these results to other domains. Our experiments rely
on the assumptions that agents have utility functions
which they are able to evaluate exactly, that agents
know their preferences, and that agents have some pref-
erence over who they choose to associate with. Many
economic domains meet these assumptions, but there
are other domains in which agents cannot easily ex-
press their utility functions. In addition, we have not
touched upon the problem of market formation and ad-
vertising, apart from declaring that markets exist and
that all agents know about them. A crucial problem
in the UMDL was the description and dissemination of
information about these markets, so as to encourage
the congregating of the “right” agents. This remains a
topic for future research.

There are many other potential directions for this
research. As noted previously, goods in this economy
are immediately consumed. If goods are instead trans-
formed and resold, then the need for well-constructed
markets becomes even more important. Additionally,
this work does not explicitly treat nonstationarity in
the consumer population. An important question to
ask would be whether the existence of congregations
makes consumer and producer entry more difficult.

Finally, we earlier stressed the notion of a congrega-
tion as an entity unto itself. This leads one to consider
notions of group selection, whereby it becomes rational
for agents within a congregation to behave altruistically,
so as to increase the fitness of the rest of the congre-
gation and improve their chances when competing with
agents outside of the congregation. In environments in
which agents typically interact within a congregation,
but occasionally encounter agents from the population
at large, this can be a very effective strategy (see (Wil-
son 1980) for ecological examples). This would also lead
us to examine the relationship between individual and
group-level learning: as individual agents develop more
sophisticated strategies, how does the composition of
the congregation change?
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